Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgrawal, Aditien_US
dc.contributor.authorGarg, Mahak L.en_US
dc.contributor.authorPrakash, Suryaen_US
dc.contributor.authorJoshi, Piyushen_US
dc.contributor.authorSrivastava, Akhilesh Mohanen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:54Z-
dc.date.issued2020-
dc.identifier.citationAgrawal, A., Garg, M., Prakash, S., Joshi, P., & Srivastava, A. M. (2020). Hand down, face up: Innovative mobile attendance system using face recognition deep learning doi:10.1007/978-981-32-9291-8_29en_US
dc.identifier.isbn9789813292901-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85075612188)-
dc.identifier.urihttps://doi.org/10.1007/978-981-32-9291-8_29-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4586-
dc.description.abstractComputer Vision is considered as the science and technology of the machines that see. When paired with deep learning, it has limitless applications in various fields. Among various applications, face recognition is one of the most useful real-life problem-solving applications. We propose a technique that uses image enhancement and facial recognition technique to develop an innovative and time-saving class attendance system. The idea is to train a Convolutional Neural Network (CNN) using the enhanced images of the students in a certain course and then using that learned model, to recognize multiple students present in a lecture. We propose the use of deep learning model that is provided by OpenFace to train and recognize the images. This proposed solution can be easily installed in any organization, if the images of all persons to be marked this way are available with the administration. The proposed system marks attendance of students 100% accurately when captured images have faces in right pose and are not occluded. © 2020, Springer Nature Singapore Pte Ltd.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectComputer visionen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectImage enhancementen_US
dc.subjectLearning systemsen_US
dc.subjectProblem solvingen_US
dc.subjectStudentsen_US
dc.subjectAttendance systemsen_US
dc.subjectFacial recognitionen_US
dc.subjectLearning modelsen_US
dc.subjectMobile biometricsen_US
dc.subjectOpenFaceen_US
dc.subjectReal-life problemsen_US
dc.subjectScience and Technologyen_US
dc.subjectFace recognitionen_US
dc.titleHand Down, Face Up: Innovative Mobile Attendance System Using Face Recognition Deep Learningen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: