Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatel, Amey Kiranen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:54Z-
dc.date.issued2019-
dc.identifier.citationChen, Y. -., Patel, A. K., & Chen, C. -. (2019). Image haze removal by adaptive cycleGAN. Paper presented at the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2019, 1122-1127. doi:10.1109/APSIPAASC47483.2019.9023296en_US
dc.identifier.isbn9781728132488-
dc.identifier.otherEID(2-s2.0-85082384414)-
dc.identifier.urihttps://doi.org/10.1109/APSIPAASC47483.2019.9023296-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4588-
dc.description.abstractWe introduce our machine-learning method to remove the fog and haze in image. Our model is based on CycleGAN, an ingenious image-to-image translation model, which can be applied to de-hazing task. The datasets that we used for training and testing are creatd according to the atmospheric scattering model. With the change of the adversarial loss from cross-entropy loss to hinge loss, and the change of the reconstruction loss from MAE loss to perceptual loss, we improve the performance measure of SSIM value from 0.828 to 0.841 on the NYU dataset. With the Middlebury stereo datasets, we achieve an SSIM value of 0.811, which is significantly better than the baseline CycleGAN model. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2019en_US
dc.subjectLearning systemsen_US
dc.subjectAtmospheric scattering modelsen_US
dc.subjectCross entropyen_US
dc.subjectFog and hazeen_US
dc.subjectHaze removalen_US
dc.subjectImage translationen_US
dc.subjectMachine learning methodsen_US
dc.subjectPerformance measureen_US
dc.subjectTraining and testingen_US
dc.subjectStereo image processingen_US
dc.titleImage haze removal by adaptive cycleGANen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: