Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGautam, Chandanen_US
dc.contributor.authorBansal, Ramanen_US
dc.contributor.authorGarg, Ruchiren_US
dc.contributor.authorAgarwalla, Vedaantaen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:34:58Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:34:58Z-
dc.date.issued2019-
dc.identifier.citationGautam, C., Bansal, R., Garg, R., Agarwalla, V., & Tiwari, A. (2019). A fast adaptive classification approach using kernel ridge regression and clustering for non-stationary data stream doi:10.1007/978-981-13-0923-6_63en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051989466)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_63-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4615-
dc.description.abstractClassification on non-stationary data requires faster evolving of the model while keeping the accuracy levels consistent. We present here a faster and reliable model to handle non-stationary data when a small number of labelled samples are available with the stream of unlabelled samples. An active learning model is proposed with the help of supervised model, i.e. Kernel Ridge Regression (KRR) with the combination of an unsupervised model, i.e. K-means clustering to handle the concept drift in the data efficiently. Proposed model consumes less time and at the same time yields similar or better accuracy compared to the existing clustering-based active learning methods. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectLearning systemsen_US
dc.subjectRegression analysisen_US
dc.subjectSignal processingen_US
dc.subjectActive learning methodsen_US
dc.subjectAdaptive classificationen_US
dc.subjectConcept driftsen_US
dc.subjectKernelen_US
dc.subjectKernel ridge regression (KRR)en_US
dc.subjectKernel ridge regressionsen_US
dc.subjectMulti-class classificationen_US
dc.subjectNonstationary dataen_US
dc.subjectClassification (of information)en_US
dc.titleA fast adaptive classification approach using kernel ridge regression and clustering for non-stationary data streamen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: