Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4644
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaheshwari, Muditen_US
dc.contributor.authorSrivastava, Akhilesh Mohanen_US
dc.contributor.authorAgrawal, Aditien_US
dc.contributor.authorGarg, Mahak L.en_US
dc.contributor.authorPrakash, Suryaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:03Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:03Z-
dc.date.issued2018-
dc.identifier.citationMaheshwari, M., Arora, S., Srivastava, A. M., Agrawal, A., Garg, M., & Prakash, S. (2018). Earprint based mobile user authentication using convolutional neural network and SIFT doi:10.1007/978-3-319-95930-6_87en_US
dc.identifier.isbn9783319959290-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-85051853501)-
dc.identifier.urihttps://doi.org/10.1007/978-3-319-95930-6_87-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4644-
dc.description.abstractBiometric verification techniques are increasingly being used in mobile devices these days with the aim of keeping private data secure and impregnable. In our approach, we propose to use the inbuilt capacitive touchscreen of mobile devices as an image sensor to collect the image of ear (earprint) and use it as biometrics. The technique produces a precision of 0.8761 and recall of 0.596 on the acquired data. Since most of the touch screens are capacitive sensing, our proposed technique presents a reliable biometric solution for a vast number of mobile devices. © 2018, Springer International Publishing AG, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.subjectAuthenticationen_US
dc.subjectBiometricsen_US
dc.subjectCapacitive sensorsen_US
dc.subjectComputation theoryen_US
dc.subjectConvolutionen_US
dc.subjectData privacyen_US
dc.subjectNeural networksen_US
dc.subjectTouch screensen_US
dc.subjectBiometric verificationen_US
dc.subjectCapacitive sensingen_US
dc.subjectConvolutional neural networken_US
dc.subjectEarprinten_US
dc.subjectMobile biometricsen_US
dc.subjectMobile usersen_US
dc.subjectPrivate dataen_US
dc.subjectSIFTen_US
dc.subjectIntelligent computingen_US
dc.titleEarprint based mobile user authentication using convolutional neural network and SIFTen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: