Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:17Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:17Z-
dc.date.issued2014-
dc.identifier.citationJain, S., Bagga, S., Hablani, R., Chaudhari, N., & Tanwani, S. (2014). Facial expression recognition using local binary patterns with different distance measures doi:10.1007/978-81-322-1665-0_86en_US
dc.identifier.isbn9788132216643-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-84927608774)-
dc.identifier.urihttps://doi.org/10.1007/978-81-322-1665-0_86-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4726-
dc.description.abstractFacial expression recognition is a well-known activity in the domain of human–computer interaction and computer vision. In this work, we have applied face detection algorithm on the images to get the facial part only; then, we have used local binary pattern (LBP) operator to get the facial features. Finally, to match the test image with the different expressions, various distance measures which are Euclidian distance, taxicab distance, chessboard distance, Bray–Curtis distance and chi-square distance have been applied. The maximum facial expression recognition rate of Bray–Curtis distance measure reaches 92.85% for person-dependent expression recognition, which is better than other distance measures. The experiments were performed on JAFFE which is a standard dataset, and result shows that the facial expression recognition with LBP and Bray–Curtis for person-dependent recognition is an effective method. © Springer India 2014.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectBinary imagesen_US
dc.subjectComputer visionen_US
dc.subjectContent based retrievalen_US
dc.subjectHuman computer interactionen_US
dc.subjectImage matchingen_US
dc.subjectImage segmentationen_US
dc.subjectInformation scienceen_US
dc.subjectIntelligent computingen_US
dc.subjectTaxicabsen_US
dc.subjectComputer interactionen_US
dc.subjectDistance measureen_US
dc.subjectExpression recognitionen_US
dc.subjectFace detection algorithmen_US
dc.subjectFacial expression recognitionen_US
dc.subjectFacial Expressionsen_US
dc.subjectLocal binary pattern operatorsen_US
dc.subjectLocal binary patternsen_US
dc.subjectFace recognitionen_US
dc.titleFacial expression recognition using local binary patterns with different distance measuresen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: