Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4748
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:21Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:21Z-
dc.date.issued2013-
dc.identifier.citationBhardwaj, A., & Tiwari, A. (2013). Performance improvement in genetic programming using modified crossover and node mutation. Paper presented at the GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference Companion, 1721-1722. doi:10.1145/2464576.2480787en_US
dc.identifier.isbn9781450319645-
dc.identifier.otherEID(2-s2.0-84882305246)-
dc.identifier.urihttps://doi.org/10.1145/2464576.2480787-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4748-
dc.description.abstractDuring the evolution of solutions using Genetic Programming (GP) there is generally an increase in average tree size without a corresponding increase in fitness-a phenomenon commonly referred to as bloat. Bloating increases time to find the best solution. Sometimes, best solution can never be obtained. In this paper we are proposing a modified crossover and point mutation operation in GP algorithm in order to reduce the problem of bloat. To demonstrate our approach, we have designed a Multiclass Classifier using GP by taking few benchmark datasets. The results obtained show that by applying modified crossover together with modified node mutation reduces the problem of bloat substantially without compromising the performance.en_US
dc.language.isoenen_US
dc.sourceGECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference Companionen_US
dc.subjectBenchmark datasetsen_US
dc.subjectBloaten_US
dc.subjectG-P algorithmsen_US
dc.subjectModified crossoveren_US
dc.subjectMulti-class classifieren_US
dc.subjectPoint mutationsen_US
dc.subjectTree sizeen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectGenetic programmingen_US
dc.titlePerformance improvement in genetic programming using modified crossover and node mutationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: