Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4769
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:26Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:26Z-
dc.date.issued2012-
dc.identifier.citationChaudhari, N. S., & Prajapati, G. L. (2012). Learning alignment profiles for structural similarity measure. Paper presented at the Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications, ICIEA 2012, 1319-1324. doi:10.1109/ICIEA.2012.6360926en_US
dc.identifier.isbn9781457721175-
dc.identifier.otherEID(2-s2.0-84871683578)-
dc.identifier.urihttps://doi.org/10.1109/ICIEA.2012.6360926-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4769-
dc.description.abstractSynthesis of context-free grammar based on alignment profile similarity from input sample texts of the unknown target language is studied. Among researches in artificial intelligence, learning context-free grammars from sample strings is a fundamental and important subject, since it is a basic means for defining natural language and for syntactic pattern recognition. Alignment profiles guide the induction of grammar, and hence better alignment profiles improve the accuracy of learned grammars. In this paper, we introduce a scheme for learning alignment profiles from input texts. Several examples are presented to illustrate the scheme and its behavior. © 2012 IEEE.en_US
dc.language.isoenen_US
dc.sourceProceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications, ICIEA 2012en_US
dc.subjectInput sampleen_US
dc.subjectLanguage learningen_US
dc.subjectNatural languagesen_US
dc.subjectprofile similarityen_US
dc.subjectStructural similarityen_US
dc.subjectSyntactic pattern recognitionen_US
dc.subjectTarget languageen_US
dc.subjectArtificial intelligenceen_US
dc.subjectContext free grammarsen_US
dc.subjectFuzzy systemsen_US
dc.subjectIndustrial electronicsen_US
dc.subjectPattern recognitionen_US
dc.subjectAlignmenten_US
dc.titleLearning alignment profiles for structural similarity measureen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: