Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4775
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:27Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:27Z-
dc.date.issued2012-
dc.identifier.citationSingh, P., Verma, A., & Chaudhari, N. S. (2012). Performance evaluation of classifiers applying directional features for devnagri numeral recognition doi:10.4028/www.scientific.net/AMR.403-408.1042en_US
dc.identifier.isbn9783037853122-
dc.identifier.issn1022-6680-
dc.identifier.otherEID(2-s2.0-83255181862)-
dc.identifier.urihttps://doi.org/10.4028/www.scientific.net/AMR.403-408.1042-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4775-
dc.description.abstractHandwriting recognition is a special category of pattern recognition which is matured enough for English language, but for Hindi it is in development state. Among various features directional features found to outperform than the others. So in this paper, we have evaluated the performance of various direction features and various classifiers for the handwritten Devnagri numeral recognition. The character image is preprocessed and portioned into sub-images. The standard zoning is compared against flexible zoning. An experimental comparison of gradient features and chain code histogram feature is evaluated with Bays classifier, k-nn, fuzzy k-nn. For comparison of the performance, the error rate and complexity of computation and time is used as the measure. Gradient features are found to outperform among various directional features. © (2012) Trans Tech Publications, Switzerland.en_US
dc.language.isoenen_US
dc.sourceAdvanced Materials Researchen_US
dc.subjectBayes Classifieren_US
dc.subjectChain codesen_US
dc.subjectCharacter imagesen_US
dc.subjectDirectional featureen_US
dc.subjectEnglish languagesen_US
dc.subjectError rateen_US
dc.subjectExperimental comparisonen_US
dc.subjectFuzzy k-NNen_US
dc.subjectGradient featureen_US
dc.subjectHandwriting recognitionen_US
dc.subjectHistogram featuresen_US
dc.subjectNearest neighbouren_US
dc.subjectNumeral recognitionen_US
dc.subjectPerformance evaluationen_US
dc.subjectSubimagesen_US
dc.subjectCharacter recognitionen_US
dc.subjectCodes (symbols)en_US
dc.subjectNeural networksen_US
dc.subjectPattern recognition systemsen_US
dc.subjectZoningen_US
dc.subjectFeature extractionen_US
dc.titlePerformance evaluation of classifiers applying directional features for Devnagri numeral recognitionen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: