Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/4782
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chaudhari, Narendra S. | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-17T15:35:28Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-17T15:35:28Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Li, S., Tsang, I. W., & Chaudhari, N. S. (2011). Infinite decision agent ensemble learning system for credit risk analysis. Paper presented at the Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011, , 1 36-39. doi:10.1109/ICMLA.2011.80 | en_US |
dc.identifier.isbn | 9780769546070 | - |
dc.identifier.other | EID(2-s2.0-84863285507) | - |
dc.identifier.uri | https://doi.org/10.1109/ICMLA.2011.80 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/4782 | - |
dc.description.abstract | Considering the special needs of credit risk analysis, the Infinite DEcision Agent ensemble Learning (IDEAL) system is proposed. In the first level of our model, we adopt soft margin boosting to overcome over fitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron kernel is employed in RVM to generate infinite subagents. Our IDEAL system also shares some good properties, such as good generalization performance, immunity to over fitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy. © 2011 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.source | Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011 | en_US |
dc.subject | Credit risk analysis | en_US |
dc.subject | Decision agent | en_US |
dc.subject | Decision systems | en_US |
dc.subject | Ensemble learning | en_US |
dc.subject | Generalization performance | en_US |
dc.subject | Ideal systems | en_US |
dc.subject | Overfitting | en_US |
dc.subject | Perceptron | en_US |
dc.subject | Second level | en_US |
dc.subject | Soft margins | en_US |
dc.subject | Third level | en_US |
dc.subject | Learning systems | en_US |
dc.subject | Risk assessment | en_US |
dc.title | Infinite decision agent ensemble learning system for credit risk analysis | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Computer Science and Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: