Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4791
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:30Z-
dc.date.issued2010-
dc.identifier.citationPurohit, A., Chaudhari, N. S., & Tiwari, A. (2010). Construction of classifier with feature selection based on genetic programming. Paper presented at the 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010, doi:10.1109/CEC.2010.5586536en_US
dc.identifier.isbn9781424469109-
dc.identifier.otherEID(2-s2.0-79959393323)-
dc.identifier.urihttps://doi.org/10.1109/CEC.2010.5586536-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4791-
dc.description.abstractThis paper presents a genetic programming (GP) based approach for designing classifiers with feature selection using a modified crossover operator [12]. The proposed GP methodology simultaneously selects a good subset of features and constructs a classifier using the selected features. For a c-class problem, it provides a classifier having c trees. To overcome the difficulties with standard crossover operator, we have used a crossover operator which discovers the best possible crossover site for a subtree and attains higher fitness values while processing fewer individuals. We have tested our method on several datasets having large number of features. We have compared the performance of our method with results available in the literature and found that the proposed method generates good results. © 2010 IEEE.en_US
dc.language.isoenen_US
dc.source2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010en_US
dc.subjectC-treesen_US
dc.subjectCrossover operatoren_US
dc.subjectCrossover sitesen_US
dc.subjectData setsen_US
dc.subjectFitness valuesen_US
dc.subjectSubtreesen_US
dc.subjectArtificial intelligenceen_US
dc.subjectFeature extractionen_US
dc.subjectGenetic algorithmsen_US
dc.subjectGenetic programmingen_US
dc.titleConstruction of classifier with feature selection based on genetic programmingen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: