Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4793
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorThomas, Jayaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:31Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:31Z-
dc.date.issued2010-
dc.identifier.citationChaudhari, N. S., Tiwari, A., & Thomas, J. (2010). A novel SVM based approach for noisy data elemination. Paper presented at the 11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010, 1760-1765. doi:10.1109/ICARCV.2010.5707392en_US
dc.identifier.isbn9781424478132-
dc.identifier.otherEID(2-s2.0-79952407634)-
dc.identifier.urihttps://doi.org/10.1109/ICARCV.2010.5707392-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4793-
dc.description.abstractIn this paper we propose a novel Support Vector Machine(SVM) based approach for noisy data removal from datasets. It is observed that the instability present in the dataset greatly affects the overall performance of the any classifier. Hence, we propose a methodology for removal of such instabilities. In the proposed approach, we proceed by determining the clusters formed using support equilibrium points. Then analyzing, each cluster and remove the noisy data using the accuracy factor. Our approach, provide an important feature for reducing the training time and reducing the misclassification test error. The methodology if adopted for classifiers before the training phase will enhance the efficiency of the system. The approach is being tested on benchmark dataset, and it is observed that the efficiency of classifier increased by 15-20%. ©2010 IEEE.en_US
dc.language.isoenen_US
dc.source11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010en_US
dc.subjectAccuracy factoren_US
dc.subjectBasin of attractionen_US
dc.subjectBenchmark datasetsen_US
dc.subjectData setsen_US
dc.subjectEquilibrium pointen_US
dc.subjectKernel methoden_US
dc.subjectMisclassificationsen_US
dc.subjectNoisy dataen_US
dc.subjectTest errorsen_US
dc.subjectTraining phaseen_US
dc.subjectTraining timeen_US
dc.subjectComputer visionen_US
dc.subjectSupport vector machinesen_US
dc.subjectRoboticsen_US
dc.titleA Novel SVM based approach for noisy data eleminationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: