Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4796
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaudhari, Narendra S.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorThomas, Jayaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:31Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:31Z-
dc.date.issued2010-
dc.identifier.citationChaudhari, N. S., Tiwari, A., Thakar, U., & Thomas, J. (2010). Semi-supervised classification for intrusion detection system in networks. Paper presented at the 2010 IEEE Conference on Cybernetics and Intelligent Systems, CIS 2010, 120-125. doi:10.1109/ICCIS.2010.5518571en_US
dc.identifier.isbn9781424464999-
dc.identifier.otherEID(2-s2.0-77956076101)-
dc.identifier.urihttps://doi.org/10.1109/ICCIS.2010.5518571-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4796-
dc.description.abstractWe propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data. © 2010 IEEE.en_US
dc.language.isoenen_US
dc.source2010 IEEE Conference on Cybernetics and Intelligent Systems, CIS 2010en_US
dc.subjectDecision boundaryen_US
dc.subjectGood dataen_US
dc.subjectIDSen_US
dc.subjectIntrusion detection systemsen_US
dc.subjectKernel methodsen_US
dc.subjectLagrangeen_US
dc.subjectSample dataen_US
dc.subjectSemi-superviseden_US
dc.subjectSemi-supervised classificationen_US
dc.subjectTraining sampleen_US
dc.subjectWeb log dataen_US
dc.subjectClassifiersen_US
dc.subjectComputer crimeen_US
dc.subjectCyberneticsen_US
dc.subjectIntelligent systemsen_US
dc.subjectLagrange multipliersen_US
dc.subjectOptimizationen_US
dc.subjectSupervised learningen_US
dc.subjectIntrusion detectionen_US
dc.titleSemi-supervised classification for intrusion detection system in networksen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: