Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4800
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChauhan, Vikasen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:32Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:32Z-
dc.date.issued2022-
dc.identifier.citationChauhan, V., & Tiwari, A. (2022). Randomized neural networks for multilabel classification. Applied Soft Computing, 115 doi:10.1016/j.asoc.2021.108184en_US
dc.identifier.issn1568-4946-
dc.identifier.otherEID(2-s2.0-85121143599)-
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2021.108184-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4800-
dc.description.abstractMultilabel classification is a supervised learning problem in which input instances belong to multiple output labels. In this paper, we propose noniterative randomization-based neural networks for multilabel classification. These multilabel neural networks are named as Multilabel Random Vector Functional Link Network (ML-RVFL), Multilabel Kernelized Random Vector Functional Link Network (ML-KRVFL), Multilabel Broad Learning System (ML-BLS), and Multilabel Fuzzy Broad Learning System (ML-FBLS). The output weights of these neural networks are computed using pseudoinverse. At the output layer, multilabel classification is performed by using an adaptive threshold function. The computation of output weights using pseudoinverse retains the faster computation power of these algorithms compared to iterative learning algorithms. The adaptive threshold function used in the proposed approach can consider the correlation among the output labels and the whole dataset for threshold computation. Five multilabel evaluation metrics evaluate the proposed multilabel neural networks on 12 benchmark datasets of various domains such as text, image, and genomics. The ML-KRVFL provides the overall best Friedman rankings on five evaluation metrics followed by ML-RVFL, ML-FBLS, and ML-BLS, respectively. Based on the experimentation results, the proposed ML-KRVFL, ML-RVFL, ML-FBLS, and ML-BLS perform better than other relevant multilabel approaches in the mentioned order.The proposed approaches are faster than other state-of-the-art iterative approaches and noniterative approaches in terms of running time. © 2021 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceApplied Soft Computingen_US
dc.subjectClassification (of information)en_US
dc.subjectFunction evaluationen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy neural networksen_US
dc.subjectFuzzy systemsen_US
dc.subjectIterative methodsen_US
dc.subjectLearning algorithmsen_US
dc.subjectVectorsen_US
dc.subjectBroad learning systemen_US
dc.subjectFunctional-link networken_US
dc.subjectFuzzy broad learning systemen_US
dc.subjectKernel random vector functional link networken_US
dc.subjectMulti-label classificationsen_US
dc.subjectMulti-labelsen_US
dc.subjectMultilabelen_US
dc.subjectMultilabel randomized neural networken_US
dc.subjectNeural-networksen_US
dc.subjectNoniterative learningen_US
dc.subjectRandom vector functional link networken_US
dc.subjectRandom vectorsen_US
dc.subjectLearning systemsen_US
dc.titleRandomized neural networks for multilabel classificationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: