Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4855
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChaturvedi, Animeshen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:46Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:46Z-
dc.date.issued2020-
dc.identifier.citationChaturvedi, A., Tiwari, A., & Chaturvedi, S. (2020). SysEvoRecomd: Network reconstruction by graph evolution and change learning. IEEE Systems Journal, 14(3), 4007-4014. doi:10.1109/JSYST.2020.2988037en_US
dc.identifier.issn1932-8184-
dc.identifier.otherEID(2-s2.0-85090917546)-
dc.identifier.urihttps://doi.org/10.1109/JSYST.2020.2988037-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4855-
dc.description.abstractWe introduce a System Evolution Recommender (SysEvoRecomd) algorithm that uses a novel algorithm Graph Evolution and Change Learning (GECL) to do system network reconstruction. Internally, GECL uses Deep Evolution Learner (DEL) to learn about evolution and changes happened over a system state series. The DEL is an extension of the deep learning algorithm, which uses an Evolving Connection Matrix (ECM) representing temporal patterns of the evolving entity-connections for training incremental states. The DEL generates a Deep System Neural Network (Deep SysNN) to do network (graph) reconstruction. The SysEvoRecomd extracts the evolving characteristic of graph with deep neural network techniques. It aims to learn the evolution and changes of the system state series to reconstruct the system network. Our key idea is to design three variants of GECL based on three remodeled deep learning techniques: Restricted Boltzmann Machine (RBM), Deep Belief Network (DBN), and denoising Autoencoder (dA). Based on proposed SysEvoRecomd algorithm, we developed a SysEvoRecomd-Tool, which is applied on different evolving systems: software, natural language, multisport event, retail market, and IMDb movie genre. We demonstrated the usefulness of intelligent recommendations using three variants of GECL based on RBM, DBN, and dA. © 2007-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Systems Journalen_US
dc.subjectDeep learningen_US
dc.subjectDeep neural networksen_US
dc.subjectGraph algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectNeural networksen_US
dc.subjectConnection matricesen_US
dc.subjectDeep belief network (DBN)en_US
dc.subjectEvolution and Changeen_US
dc.subjectEvolving characteristicen_US
dc.subjectLearning techniquesen_US
dc.subjectNetwork reconstructionen_US
dc.subjectNeural network techniquesen_US
dc.subjectRestricted boltzmann machineen_US
dc.subjectLearning algorithmsen_US
dc.titleSysEvoRecomd: Network Reconstruction by Graph Evolution and Change Learningen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: