Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4862
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBharill, Nehaen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:47Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:47Z-
dc.date.issued2020-
dc.identifier.citationBharill, N., Tiwari, A., Malviya, A., Patel, O. P., Gupta, A., Puthal, D., . . . Prasad, M. (2020). Fuzzy knowledge based performance analysis on big data. Neurocomputing, 389, 218-228. doi:10.1016/j.neucom.2018.10.088en_US
dc.identifier.issn0925-2312-
dc.identifier.otherEID(2-s2.0-85064842181)-
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2018.10.088-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4862-
dc.description.abstractDue to the various emerging technologies, an enormous amount of data, termed as Big Data, gets collected every day and can be of great use in various domains. Clustering algorithms that store the entire data into memory for analysis become unfeasible when the dataset is too large. Many clustering algorithms present in the literature deal with the analysis of huge amount of data. The paper discusses a new clustering approach called an Incremental Random Sampling with Iterative Optimization Fuzzy c-Means (IRSIO-FCM) algorithm. It is implemented on Apache Spark, a framework for Big Data processing. Sparks works really well for iterative algorithms by supporting in-memory computations, scalability, etc. IRSIO-FCM not only facilitates effective clustering of Big Data but also performs storage space optimization during clustering. To establish a fair comparison of IRSIO-FCM, we propose an incremental version of the Literal Fuzzy c-Means (LFCM) called ILFCM implemented in Apache Spark framework. The experimental results are analyzed in terms of time and space complexity, NMI, ARI, speedup, sizeup, and scaleup measures. The reported results show that IRSIO-FCM achieves a significant reduction in run-time in comparison with ILFCM. © 2019 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceNeurocomputingen_US
dc.subjectBig dataen_US
dc.subjectCluster analysisen_US
dc.subjectDigital storageen_US
dc.subjectFuzzy systemsen_US
dc.subjectInternet of thingsen_US
dc.subjectIterative methodsen_US
dc.subjectKnowledge based systemsen_US
dc.subjectLarge dataseten_US
dc.subjectApache spark frameworken_US
dc.subjectEmerging technologiesen_US
dc.subjectIncremental clustering algorithmen_US
dc.subjectIterative Optimizationen_US
dc.subjectParallel processingen_US
dc.subjectPerformance analysisen_US
dc.subjectTime and space complexityen_US
dc.subjectVery large datumen_US
dc.subjectClustering algorithmsen_US
dc.subjectarticleen_US
dc.subjectbig dataen_US
dc.subjectcontrolled studyen_US
dc.subjectinternet of thingsen_US
dc.subjectmemoryen_US
dc.subjectsamplingen_US
dc.subjectstorageen_US
dc.titleFuzzy knowledge based performance analysis on big dataen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: