Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGautam, Chandanen_US
dc.contributor.authorMishra, Pratik K.en_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorRichhariya, Bharaten_US
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:35:50Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:35:50Z-
dc.date.issued2020-
dc.identifier.citationGautam, C., Mishra, P. K., Tiwari, A., Richhariya, B., Pandey, H. M., Wang, S., & Tanveer, M. (2020). Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data. Neural Networks, 123, 191-216. doi:10.1016/j.neunet.2019.12.001en_US
dc.identifier.issn0893-6080-
dc.identifier.otherEID(2-s2.0-85076900773)-
dc.identifier.urihttps://doi.org/10.1016/j.neunet.2019.12.001-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4871-
dc.description.abstractDeep kernel learning has been well explored for multi-class classification tasks; however, relatively less work is done for one-class classification (OCC). OCC needs samples from only one class to train the model. Most recently, kernel regularized least squares (KRL) method-based deep architecture is developed for the OCC task. This paper introduces a novel extension of this method by embedding minimum variance information within this architecture. This embedding improves the generalization capability of the classifier by reducing the intra-class variance. In contrast to traditional deep learning methods, this method can effectively work with small-size datasets. We conduct a comprehensive set of experiments on 18 benchmark datasets (13 biomedical and 5 other datasets) to demonstrate the performance of the proposed classifier. We compare the results with 16 state-of-the-art one-class classifiers. Further, we also test our method for 2 real-world biomedical datasets viz.; detection of Alzheimer's disease from structural magnetic resonance imaging data and detection of breast cancer from histopathological images. Proposed method exhibits more than 5% F1 score compared to existing state-of-the-art methods for various biomedical benchmark datasets. This makes it viable for application in biomedical fields where relatively less amount of data is available. © 2019 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceNeural Networksen_US
dc.subjectAnomaly detectionen_US
dc.subjectBenchmarkingen_US
dc.subjectDeep learningen_US
dc.subjectEmbeddingsen_US
dc.subjectImage segmentationen_US
dc.subjectLeast squares approximationsen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectMedical imagingen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectAlzheimer's diseaseen_US
dc.subjectBreast Canceren_US
dc.subjectGeneralization capabilityen_US
dc.subjectKernel learningen_US
dc.subjectMulti-class classificationen_US
dc.subjectOne-class Classificationen_US
dc.subjectRegularized least squaresen_US
dc.subjectState-of-the-art methodsen_US
dc.subjectClassification (of information)en_US
dc.subjectAlzheimer diseaseen_US
dc.subjectArticleen_US
dc.subjectbenchmarkingen_US
dc.subjectbreast canceren_US
dc.subjectcancer classificationen_US
dc.subjectclassificationen_US
dc.subjectclassifieren_US
dc.subjectclinical articleen_US
dc.subjectcontrolled studyen_US
dc.subjectdeep learningen_US
dc.subjecthistopathologyen_US
dc.subjecthumanen_US
dc.subjectleast square analysisen_US
dc.subjectnuclear magnetic resonance imagingen_US
dc.subjectpriority journalen_US
dc.subjectscoring systemen_US
dc.subjectsupport vector machineen_US
dc.subjectvarianceen_US
dc.titleMinimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical dataen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze, Green-
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: