Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4967
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBharill, Nehaen_US
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:36:15Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:36:15Z-
dc.date.issued2017-
dc.identifier.citationSaxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., . . . Lin, C. -. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664-681. doi:10.1016/j.neucom.2017.06.053en_US
dc.identifier.issn0925-2312-
dc.identifier.otherEID(2-s2.0-85021901708)-
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2017.06.053-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4967-
dc.description.abstractThis paper presents a comprehensive study on clustering: exiting methods and developments made at various times. Clustering is defined as an unsupervised learning where the objects are grouped on the basis of some similarity inherent among them. There are different methods for clustering the objects such as hierarchical, partitional, grid, density based and model based. The approaches used in these methods are discussed with their respective states of art and applicability. The measures of similarity as well as the evaluation criteria, which are the central components of clustering, are also presented in the paper. The applications of clustering in some fields like image segmentation, object and character recognition and data mining are highlighted. © 2017 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceNeurocomputingen_US
dc.subjectCharacter recognitionen_US
dc.subjectData miningen_US
dc.subjectEducationen_US
dc.subjectImage segmentationen_US
dc.subjectUnsupervised learningen_US
dc.subjectCentral componenten_US
dc.subjectClusteringen_US
dc.subjectClustering techniquesen_US
dc.subjectDensity-baseden_US
dc.subjectEvaluation criteriaen_US
dc.subjectModel-based OPCen_US
dc.subjectSimilarity measureen_US
dc.subjectPattern recognitionen_US
dc.subjectalgorithmen_US
dc.subjectArticleen_US
dc.subjectartificial neural networken_US
dc.subjectautomated pattern recognitionen_US
dc.subjectbioinformaticsen_US
dc.subjectcluster analysisen_US
dc.subjectdata miningen_US
dc.subjectdecision treeen_US
dc.subjectgene expressionen_US
dc.subjectimage segmentationen_US
dc.subjectinformation retrievalen_US
dc.subjectnuclear magnetic resonance imagingen_US
dc.subjectpriority journalen_US
dc.subjectspatial analysisen_US
dc.titleA review of clustering techniques and developmentsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: