Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/4999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiwari, Arunaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:36:24Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:36:24Z-
dc.date.issued2016-
dc.identifier.citationPatel, O. P., & Tiwari, A. (2016). Novel quantum inspired binary neural network algorithm. Sadhana - Academy Proceedings in Engineering Sciences, 41(11), 1299-1309. doi:10.1007/s12046-016-0561-0en_US
dc.identifier.issn0256-2499-
dc.identifier.otherEID(2-s2.0-84994745322)-
dc.identifier.urihttps://doi.org/10.1007/s12046-016-0561-0-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/4999-
dc.description.abstractIn this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically and gives large search space to find optimal value of required parameters using Gaussian random number generator. The neural network structure forms constructively having three number of layers input layer: hidden layer and output layer. A constructive way of deciding the network eliminates the unnecessary training of neural network. A new parameter that is a quantum separability parameter (QSP) is introduced here, which finds an optimal separability plane to classify input samples. During learning, it searches for an optimal separability plane. This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and produces improved results than existing quantum inspired and other classification approaches. © 2016, Indian Academy of Sciences.en_US
dc.language.isoenen_US
dc.publisherSpringer Indiaen_US
dc.sourceSadhana - Academy Proceedings in Engineering Sciencesen_US
dc.subjectBinsen_US
dc.subjectNeural networksen_US
dc.subjectNumber theoryen_US
dc.subjectQuantum computersen_US
dc.subjectQuantum electronicsen_US
dc.subjectRandom number generationen_US
dc.subjectBinary neural networksen_US
dc.subjectClassification approachen_US
dc.subjectNeural network structuresen_US
dc.subjectQuantum Computingen_US
dc.subjectQuantum gatesen_US
dc.subjectQuantum separabilityen_US
dc.subjectRandom number generatorsen_US
dc.subjectseparability planeen_US
dc.subjectClassification (of information)en_US
dc.titleNovel quantum inspired binary neural network algorithmen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze-
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: