Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5005
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhardwaj, Arpiten_US
dc.contributor.authorTiwari, Arunaen_US
dc.contributor.authorKrishna, M. Rameshen_US
dc.contributor.authorVarma, M. Vishaalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:36:26Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:36:26Z-
dc.date.issued2016-
dc.identifier.citationBhardwaj, A., Tiwari, A., Krishna, R., & Varma, V. (2016). A novel genetic programming approach for epileptic seizure detection. Computer Methods and Programs in Biomedicine, 124, 2-18. doi:10.1016/j.cmpb.2015.10.001en_US
dc.identifier.issn0169-2607-
dc.identifier.otherEID(2-s2.0-84954475756)-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2015.10.001-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5005-
dc.description.abstractThe human brain is a delicate mix of neurons (brain cells), electrical impulses and chemicals, known as neurotransmitters. Any damage has the potential to disrupt the workings of the brain and cause seizures. These epileptic seizures are the manifestations of epilepsy. The electroencephalograph (EEG) signals register average neuronal activity from the cerebral cortex and label changes in activity over large areas. A detailed analysis of these electroencephalograph (EEG) signals provides valuable insights into the mechanisms instigating epileptic disorders. Moreover, the detection of interictal spikes and epileptic seizures in an EEG signal plays an important role in the diagnosis of epilepsy. Automatic seizure detection methods are required, as these epileptic seizures are volatile and unpredictable. This paper deals with an automated detection of epileptic seizures in EEG signals using empirical mode decomposition (EMD) for feature extraction and proposes a novel genetic programming (GP) approach for classifying the EEG signals. Improvements in the standard GP approach are made using a Constructive Genetic Programming (CGP) in which constructive crossover and constructive subtree mutation operators are introduced. A hill climbing search is integrated in crossover and mutation operators to remove the destructive nature of these operators. A new concept of selecting the Globally Prime offspring is also presented to select the best fitness offspring generated during crossover. To decrease the time complexity of GP, a new dynamic fitness value computation (DFVC) is employed to increase the computational speed. We conducted five different sets of experiments to evaluate the performance of the proposed model in the classification of different mixtures of normal, interictal and ictal signals, and the accuracies achieved are outstandingly high. The experimental results are compared with the existing methods on same datasets, and these results affirm the potential use of our method for accurately detecting epileptic seizures in an EEG signal. © 2015 Elsevier Ireland Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ireland Ltden_US
dc.sourceComputer Methods and Programs in Biomedicineen_US
dc.subjectElectroencephalographyen_US
dc.subjectFeature extractionen_US
dc.subjectGenetic algorithmsen_US
dc.subjectGenetic programmingen_US
dc.subjectHealthen_US
dc.subjectNeurologyen_US
dc.subjectNeuronsen_US
dc.subjectNeurophysiologyen_US
dc.subjectSignal detectionen_US
dc.subjectSignal processingen_US
dc.subjectSleep researchen_US
dc.subjectAutomatic seizure detectionsen_US
dc.subjectConstructive crossoveren_US
dc.subjectCrossover and mutationen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpilepsyen_US
dc.subjectEpileptic seizure detectionen_US
dc.subjectFitness valuesen_US
dc.subjectHill climbing searchen_US
dc.subjectBiomedical signal processingen_US
dc.subjectartificial neural networken_US
dc.subjectcontrolled studyen_US
dc.subjectdecompositionen_US
dc.subjectelectroencephalogramen_US
dc.subjectempirical mode decompositionen_US
dc.subjectFourier transformationen_US
dc.subjectgene mutationen_US
dc.subjectgenetic algorithmen_US
dc.subjecthumanen_US
dc.subjectmachine learningen_US
dc.subjectnormal humanen_US
dc.subjectnuclear reprogrammingen_US
dc.subjectoperator geneen_US
dc.subjectprogenyen_US
dc.subjectseizureen_US
dc.subjecttask performanceen_US
dc.subjectvelocityen_US
dc.subjectalgorithmen_US
dc.subjectautomated pattern recognitionen_US
dc.subjectbiological modelen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectcomputer simulationen_US
dc.subjectelectroencephalographyen_US
dc.subjectproceduresen_US
dc.subjectreproducibilityen_US
dc.subjectSeizuresen_US
dc.subjectsensitivity and specificityen_US
dc.subjectAlgorithmsen_US
dc.subjectComputer Simulationen_US
dc.subjectDiagnosis, Computer-Assisteden_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectMachine Learningen_US
dc.subjectModels, Geneticen_US
dc.subjectPattern Recognition, Automateden_US
dc.subjectReproducibility of Resultsen_US
dc.subjectSeizuresen_US
dc.subjectSensitivity and Specificityen_US
dc.titleA novel genetic programming approach for epileptic seizure detectionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Computer Science and Engineering

Files in This Item:
File SizeFormat 
JA01.pdf
  Restricted Access
2.97 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: