Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Guddu Sarojen_US
dc.contributor.authorRamabadran, Swaminathanen_US
dc.contributor.authorSingh, Abhinoy Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:31Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:31Z-
dc.date.issued2022-
dc.identifier.citationKumar, G., Mishra, V. K., Swaminathan, R., & Singh, A. K. (2022). Parameter identification of coulomb oscillator from noisy sensor data doi:10.1007/978-981-16-1777-5_20en_US
dc.identifier.issn2190-3018-
dc.identifier.otherEID(2-s2.0-85112430113)-
dc.identifier.urihttps://doi.org/10.1007/978-981-16-1777-5_20-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5036-
dc.description.abstractCoulomb oscillator is used for analyzing several real-life systems, which demand a precise modeling of the oscillation. The modeling is based on the stochastic estimation of unknown parameters of the model representing the oscillation. This paper introduces a Bayesian approach for the estimation of unknown parameters from sensor-generated noisy data. Among several Bayesian approaches, Gaussian filtering approach is most popular. A major challenge that appeared with the Gaussian filtering is intractable integral, which is approximated numerically. Several Gaussian filters have been reported by using different numerical approximation methods. This paper implements a popular Gaussian filter, named as cubature Kalman filter (CKF), for the estimation of unknown parameters. The CKF uses a third-degree spherical radial rule for the numerical approximation of the intractable integrals. Simulation results conclude a high accuracy of the CKF-based estimate of unknown parameters. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceSmart Innovation, Systems and Technologiesen_US
dc.subjectBayesian networksen_US
dc.subjectGaussian distributionen_US
dc.subjectKalman filtersen_US
dc.subjectNumerical methodsen_US
dc.subjectPulse shaping circuitsen_US
dc.subjectStochastic modelsen_US
dc.subjectStochastic systemsen_US
dc.subjectBayesian approachesen_US
dc.subjectCubature kalman filtersen_US
dc.subjectGaussian filteringen_US
dc.subjectNumerical approximationsen_US
dc.subjectPrecise modelingen_US
dc.subjectReal-life systemsen_US
dc.subjectSpherical-radial rulesen_US
dc.subjectStochastic estimationen_US
dc.subjectParameter estimationen_US
dc.titleParameter Identification of Coulomb Oscillator from Noisy Sensor Dataen_US
dc.typeBook Chapteren_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: