Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5045
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:33Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:33Z-
dc.date.issued2017-
dc.identifier.citationMandloi, M., & Bhatia, V. (2017). Symbol detection in multiple antenna wireless systems via ant colony optimization. Handbook of neural computation (pp. 225-237) doi:10.1016/B978-0-12-811318-9.00012-0en_US
dc.identifier.isbn9780128113196; 9780128113189-
dc.identifier.otherEID(2-s2.0-85032357041)-
dc.identifier.urihttps://doi.org/10.1016/B978-0-12-811318-9.00012-0-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5045-
dc.description.abstractMultiple-input multiple-output (MIMO) is a promising technique to realize tremendous rise in the demand for wireless data traffic in future generation of wireless systems. Spatial multiplexing (SM) in MIMO is a key technique through which different information symbols can be transmitted from multiple transmit antennas. However, one of the major issues with the practical implementation of SM-aided MIMO systems is with the detection of different information symbols at the receiver end. Maximum likelihood (ML) detection is a well known technique which achieves optimal bit error rate (BER) performance in MIMO systems but is computationally inefficient due to its exponential increase in computational complexity with increase in the number of antennas. Therefore, low-complexity detectors which can achieve reliable BER performance are of great interest. Recently, there has been an increased attention from wireless research community towards bio-inspired algorithms such as ant colony optimization (ACO) and particle swarm optimization (PSO) which can achieve suboptimal performance with low complexity. In this chapter, we present ACO inspired technique to detect the transmitted symbols in MIMO systems. Further, we also present simulation results to validate the advantages of ACO in MIMO systems. © 2017 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.sourceHandbook of Neural Computationen_US
dc.subjectAnt colony optimizationen_US
dc.subjectAntennasen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBit error rateen_US
dc.subjectCodes (symbols)en_US
dc.subjectComputational complexityen_US
dc.subjectError detectionen_US
dc.subjectError statisticsen_US
dc.subjectFeedback controlen_US
dc.subjectMaximum likelihooden_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSignal detectionen_US
dc.subjectTelecommunication repeatersen_US
dc.subjectAnt Colony Optimization (ACO)en_US
dc.subjectBio-inspired algorithmsen_US
dc.subjectBit error rate (BER) performanceen_US
dc.subjectExponential increaseen_US
dc.subjectMaximum-likelihood detectionen_US
dc.subjectMultiple antenna wireless systemsen_US
dc.subjectMultiple transmit antennasen_US
dc.subjectSub-optimal performanceen_US
dc.subjectMIMO systemsen_US
dc.titleSymbol Detection in Multiple Antenna Wireless Systems via Ant Colony Optimizationen_US
dc.typeBook Chapteren_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: