Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:48Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:48Z-
dc.date.issued2019-
dc.identifier.citationGarg, N., Sellathurai, M., Bettagere, B., Bhatia, V., & Ratnarajah, T. (2019). Online learning models for content popularity prediction in wireless edge caching. Paper presented at the Conference Record - Asilomar Conference on Signals, Systems and Computers, , 2019-November 337-341. doi:10.1109/IEEECONF44664.2019.9048682en_US
dc.identifier.isbn9781728143002-
dc.identifier.issn1058-6393-
dc.identifier.otherEID(2-s2.0-85083341848)-
dc.identifier.urihttps://doi.org/10.1109/IEEECONF44664.2019.9048682-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5150-
dc.description.abstractIn the geographical edge caching, where base stations (BSs) and users are distributed as Poisson point process (PPP) and the caching performance is measured using average success probability (ASP), we consider the content popularity (CP) prediction problem to maximize the ASP. Two online learning (OL) models are proposed based on weighted-follow-the-leader (FTL) and weighted-follow-the-regularized-leader (FoReL). Regret analysis concludes that OL methods results in sub-linear MSE regret and linear ASP regret. With MovieLens dataset, simulations verify that the FTL yields better MSE regret while FoReL has lower ASP regret. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceConference Record - Asilomar Conference on Signals, Systems and Computersen_US
dc.subjectComputer circuitsen_US
dc.subjectLearning systemsen_US
dc.subjectCaching performanceen_US
dc.subjectContent popularitiesen_US
dc.subjectEdge cachingen_US
dc.subjectFollow the leadersen_US
dc.subjectFollow the regularized leadersen_US
dc.subjectOnline learningen_US
dc.subjectPoisson point processen_US
dc.subjectPrediction problemen_US
dc.subjectE-learningen_US
dc.titleOnline Learning Models for Content Popularity Prediction in Wireless Edge Cachingen_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: