Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:48Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:48Z-
dc.date.issued2019-
dc.identifier.citationRamya, P. S., Yashasvi, K., Anjum, A., Bhattacharyya, A., & Pachori, R. B. (2019). A filtering method for classification of motor-imagery EEG signals for brain-computer interface. Paper presented at the Proceedings of IEEE International Conference on Signal Processing,Computing and Control, , 2019-October 354-360. doi:10.1109/ISPCC48220.2019.8988361en_US
dc.identifier.isbn9781728139869-
dc.identifier.issn2643-8615-
dc.identifier.otherEID(2-s2.0-85085524636)-
dc.identifier.urihttps://doi.org/10.1109/ISPCC48220.2019.8988361-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5153-
dc.description.abstractA brain-computer interface (BCI) utilizes brain signals such as electroencephalogram (EEG) and provides a path way for people to interact with external assistive devices. The objective of this work is to classify the tasks so that we can assist the disabled person in doing things on own way with the aid of BCI. The raw EEG signals have a chance of being affected with interference and hence have low signal to noise ratio (SNR) which may lead to erroneous results. These EEG signals are decomposed into intrinsic mode functions (IMFs) using different standard algorithms like empirical mode decomposition (EMD), multi variare empirical mode decomposition (MEMD). Different features like skewness, K-Nearest Neighbour (K-NN) entropy, sample entropy and permutation entropy are extracted from these IMFs which will significantly contribute to the classification of tasks. This work is carried out on the well established BCI motor imagery dataset, BCI competition IVa dataset-1 which will support the analysis. These extracted features are subjected to classifiers like random forest, Naive Bayes and J48 classifiers. The classification accuracies have been recorded and improved results are achieved using MEMD. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of IEEE International Conference on Signal Processing,Computing and Controlen_US
dc.subjectBrain computer interfaceen_US
dc.subjectDecision treesen_US
dc.subjectDisabled personsen_US
dc.subjectElectroencephalographyen_US
dc.subjectEntropyen_US
dc.subjectImage classificationen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSignal to noise ratioen_US
dc.subjectClassification accuracyen_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectK nearest neighbours (k-NN)en_US
dc.subjectLow signal-to-noise ratioen_US
dc.subjectMotor imagery eeg signalsen_US
dc.subjectStandard algorithmsen_US
dc.subjectBiomedical signal processingen_US
dc.titleA Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interfaceen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: