Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaut, Gopalen_US
dc.contributor.authorBhartiy, Vishalen_US
dc.contributor.authorRajput, Gunjanen_US
dc.contributor.authorKhan, Sajiden_US
dc.contributor.authorVishvakarma, Santosh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:54Z-
dc.date.issued2019-
dc.identifier.citationRaut, G., Bhartiy, V., Rajput, G., Khan, S., Beohar, A., & Vishvakarma, S. K. (2019). Efficient low-precision CORDIC algorithm for hardware implementation of artificial neural network doi:10.1007/978-981-32-9767-8_28en_US
dc.identifier.isbn9789813297661-
dc.identifier.issn1865-0929-
dc.identifier.otherEID(2-s2.0-85077109369)-
dc.identifier.urihttps://doi.org/10.1007/978-981-32-9767-8_28-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5186-
dc.description.abstractAn efficient FPGA or ASIC based hardware implementation of deep neural networks face the challenge of limited chip area, and therefore an area efficient architecture is required to fully harness the capacity of parallel processing of FPGA and ASIC in contrast to general purpose processors. In literature, the challenges are to investigate a generalized mathematical model and architecture for neuron block in an ANN implementation. We have proposed a generalized architecture for neuron implementation based on the shift-and-add algorithm, collectively known as Coordinate Rotation Digital Computer (CORDIC) algorithm, having a wide range of application. The look-up-table (LUT) based approach with a shift-and-add algorithm is an alternative technique for polynomial approximation and implementation. Paper explains how the CORDIC algorithm works and investigates the power and area efficient versatile computational unit for ANN application. The derived model proves that for the hyperbolic tangent function required a double pseudo-rotation and additional subtraction compares to the sigmoid function. In this reference versatile approach based optimized sigmoid activation function is implemented. The function is synthesized and validate on Xilinx zynq XC7Z010clg400 SoC and result reveals the minimum resources utilization. © 2019, Springer Nature Singapore Pte Ltd.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceCommunications in Computer and Information Scienceen_US
dc.subjectApplication specific integrated circuitsen_US
dc.subjectApproximation algorithmsen_US
dc.subjectChemical activationen_US
dc.subjectComputer architectureen_US
dc.subjectComputer hardwareen_US
dc.subjectDeep neural networksen_US
dc.subjectField programmable gate arrays (FPGA)en_US
dc.subjectGeneral purpose computersen_US
dc.subjectHyperbolic functionsen_US
dc.subjectNetwork architectureen_US
dc.subjectNeural networksen_US
dc.subjectPolynomial approximationen_US
dc.subjectProgrammable logic controllersen_US
dc.subjectSystem-on-chipen_US
dc.subjectTable lookupen_US
dc.subjectVLSI circuitsen_US
dc.subjectActivation functionsen_US
dc.subjectCoordinate rotation digital computer algorithmsen_US
dc.subjectCORDIC algorithmsen_US
dc.subjectGeneral purpose processorsen_US
dc.subjectHardware implementationsen_US
dc.subjectHyperbolic tangent functionen_US
dc.subjectShift-and-adden_US
dc.subjectSigmoid activation functionen_US
dc.subjectComputational efficiencyen_US
dc.titleEfficient Low-Precision CORDIC Algorithm for Hardware Implementation of Artificial Neural Networken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: