Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:57Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:57Z-
dc.date.issued2019-
dc.identifier.citationSharma, R. R., Kumar, M., & Pachori, R. B. (2019). Automated CAD identification system using time–Frequency representation based on eigenvalue decomposition of ECG signals doi:10.1007/978-981-13-0923-6_51en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85052005833)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_51-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5203-
dc.description.abstractCoronary artery disease (CAD) is a condition where coronary arteries become narrow due to the deposition of plaque inside them. It may result in heart failure and heart attack which are life-threatening conditions. Therefore, human life can be saved by detection of CAD at an early stage. Electrocardiogram (ECG) signals can be used to detect CAD. Manual inspection of ECG recordings is not reliable as the accuracy of the outcome depends on the skills and experience of clinicians. Therefore, an automated detection method for CAD based on a time–frequency representation (TFR) known as improved eigenvalue decomposition of Hankel matrix and Hilbert transform (IEVDHM-HT) using ECG beats is proposed in the present work. Time–frequency flux (TFF), coefficient of variation (COV), and energy concentration measure (ECM) are computed from the TFR matrix and fed to the random forest classifier. The proposed method has yielded 93.77% classification accuracy. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBlood vesselsen_US
dc.subjectComputer aided designen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectDecision treesen_US
dc.subjectDiseasesen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectElectrocardiographyen_US
dc.subjectHearten_US
dc.subjectMathematical transformationsen_US
dc.subjectMatrix algebraen_US
dc.subjectClassification accuracyen_US
dc.subjectCoefficient of variationen_US
dc.subjectCoronary artery diseaseen_US
dc.subjectEigenvalue decompositionen_US
dc.subjectElectrocardiogram signalen_US
dc.subjectHankel matrixen_US
dc.subjectLife threatening conditionsen_US
dc.subjectRandom forest classifieren_US
dc.subjectSignal processingen_US
dc.titleAutomated CAD identification system using time–Frequency representation based on eigenvalue decomposition of ECG signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: