Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:57Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:57Z-
dc.date.issued2019-
dc.identifier.citationShah, S., Sharma, M., Deb, D., & Pachori, R. B. (2019). An automated alcoholism detection using orthogonal wavelet filter bank doi:10.1007/978-981-13-0923-6_41en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051982546)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_41-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5204-
dc.description.abstractAlcohol misuse is a common social issue related to the central nervous system. Electroencephalogram (EEG) signals are used to depict electrical activities of the brain. In the proposed study, a new computer-aided diagnosis (CAD) has been developed to recognize alcoholic and normal EEG patterns, accurately. In this paper, we present an automatic system for the classification of normal and alcoholic EEG signals using orthogonal wavelet filter bank (OWFB). First, we derive sub-bands (SBs) of EEG signals. Then, we compute logarithms of the energies (LEs) of the SBs. The LEs are employed as the discriminating features for the separation of alcoholic and normal EEG signals. A supervised machine learning algorithm called K nearest neighbor (KNN) has been employed to classify normal and alcoholic patterns. The proposed model has yielded very good classification results. We have achieved a classification accuracy (CA) of 94.20% with tenfold cross-validation (CV). © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBrainen_US
dc.subjectComputer aided designen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectElectroencephalographyen_US
dc.subjectFilter banksen_US
dc.subjectLearning algorithmsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSupervised learningen_US
dc.subjectAlcoholismen_US
dc.subjectComputer Aided Diagnosis(CAD)en_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEnsemble subspace KNNen_US
dc.subjectFeatureen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectSupervised machine learningen_US
dc.subjectBiomedical signal processingen_US
dc.titleAn automated alcoholism detection using orthogonal wavelet filter banken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: