Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5208
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChandra, Pratishthaen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:58Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:58Z-
dc.date.issued2019-
dc.identifier.citationSharma, R. R., Chandra, P., & Pachori, R. B. (2019). Electromyogram signal analysis using eigenvalue decomposition of the hankel matrix doi:10.1007/978-981-13-0923-6_57en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051935287)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_57-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5208-
dc.description.abstractThe identification of neuromuscular abnormalities can be performed using electromyogram (EMG) signals. In this paper, we have presented a method for the analysis of amyotrophic lateral sclerosis (ALS) and normal EMG signals. The motor unit action potentials (MUAPs) have been extracted from EMG signals. The proposed method is based on improved eigenvalue decomposition of the Hankel matrix (IEVDHM). Two significant decomposed components obtained from IEVDHM, are considered for analysis purpose. These components are obtained on the basis of higher energy of components. Correntropy (CORR) and cross-information potential (CIP) are computed for two components. Thereafter, statistical analysis has been performed using the Kruskal–Wallis statistical test. We have observed that the IEVDHM method is able to provide the components, which can distinguish the ALS and normal EMG signals using CORR and CIP parameters. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectElectromyographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectMatrix algebraen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectSignal analysisen_US
dc.subjectAmyotrophic lateral sclerosisen_US
dc.subjectCorrentropyen_US
dc.subjectEigenvalue decompositionen_US
dc.subjectElectromyo gramsen_US
dc.subjectHankel matrixen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.titleElectromyogram signal analysis using eigenvalue decomposition of the Hankel matrixen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: