Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5209
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Vipinen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:38:58Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:38:58Z-
dc.date.issued2019-
dc.identifier.citationGupta, V., & Pachori, R. B. (2019). A new method for classification of focal and non-focal EEG signals doi:10.1007/978-981-13-0923-6_20en_US
dc.identifier.isbn9789811309229-
dc.identifier.issn2194-5357-
dc.identifier.otherEID(2-s2.0-85051924377)-
dc.identifier.urihttps://doi.org/10.1007/978-981-13-0923-6_20-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5209-
dc.description.abstractIn this paper, we have proposed a new methodology based on the empirical mode decomposition (EMD) for classification of focal electroencephalogram (FE) and non-focal electroencephalogram (NFE) signals. The proposed methodology uses EMD along with Sharma–Mittal entropy feature computed on Euclidean distance values from K-nearest neighbors (KNN) of FE and NFE signals. The EMD method is used to decompose these electroencephalogram (EEG) signals into amplitude modulation and frequency modulation (AM–FM) components, which are also known as intrinsic mode functions (IMFs) then the KNN approach-based Sharma–Mittal entropy feature has been computed on these IMFs. These extracted features play significant role for the classification of FE and NFE signals with the help of least squares support vector machine (LS-SVM) classifier. The classification step includes radial basis function (RBF) kernel along with tenfold cross-validation process. The proposed methodology has achieved classification accuracy of 83.18% on entire Bern-Barcelona database of FE and NFE signals. The proposed method can be beneficial for the neurosurgeons to identify focal epileptic areas of the patient brain. © Springer Nature Singapore Pte Ltd 2019.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceAdvances in Intelligent Systems and Computingen_US
dc.subjectClassification (of information)en_US
dc.subjectElectroencephalographyen_US
dc.subjectEntropyen_US
dc.subjectFrequency modulationen_US
dc.subjectFunctionsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectRadial basis function networksen_US
dc.subjectSupport vector machinesen_US
dc.subjectClassification accuracyen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectLS-SVMen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectBiomedical signal processingen_US
dc.titleA new method for classification of focal and non-focal EEG signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: