Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5262
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:39:10Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:39:10Z-
dc.date.issued2018-
dc.identifier.citationBehera, S. S., Gour, M., Kanhangad, V., & Puhan, N. (2018). Periocular recognition in cross-spectral scenario. Paper presented at the IEEE International Joint Conference on Biometrics, IJCB 2017, , 2018-January 681-687. doi:10.1109/BTAS.2017.8272757en_US
dc.identifier.isbn9781538611241-
dc.identifier.otherEID(2-s2.0-85046293570)-
dc.identifier.urihttps://doi.org/10.1109/BTAS.2017.8272757-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5262-
dc.description.abstractPeriocular recognition has been an active area of research in the past few years. In spite of the advancements made in this area, the cross-spectral matching of visible (VIS) and near-infrared (NIR) periocular images remains a challenge. In this paper, we propose a method based on illumination normalization of VIS and NIR periocular images. Specifically, the approach involves normalizing the images using the difference of Gaussian (DoG) filtering, followed by the computation of a descriptor that captures structural details in the illumination normalized images using histogram of oriented gradients (HOG). Finally, the feature vectors corresponding to the query and the enrolled image are compared using the cosine similarity metric to generate a matching score. Performance of our algorithm has been evaluated on three publicly available benchmark databases of cross-spectral periocular images. Our approach yields significant improvement in performance over the existing approach. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE International Joint Conference on Biometrics, IJCB 2017en_US
dc.subjectBenchmarkingen_US
dc.subjectBiometricsen_US
dc.subjectBenchmark databaseen_US
dc.subjectCosine similarity metricen_US
dc.subjectDifference of gaussianen_US
dc.subjectHistogram of oriented gradients (HOG)en_US
dc.subjectIllumination normalizationen_US
dc.subjectPeriocular recognitionen_US
dc.subjectSpectral matchingsen_US
dc.subjectStructural detailsen_US
dc.subjectInfrared devicesen_US
dc.titlePeriocular recognition in cross-spectral scenarioen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: