Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5282
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:39:14Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:39:14Z-
dc.date.issued2017-
dc.identifier.citationSingh, P., & Pachori, R. B. (2017). Classification of focal and nonfocal EEG signals using features derived from fourier-based rhythms. Journal of Mechanics in Medicine and Biology, 17(7) doi:10.1142/S0219519417400024en_US
dc.identifier.issn0219-5194-
dc.identifier.otherEID(2-s2.0-85030858585)-
dc.identifier.urihttps://doi.org/10.1142/S0219519417400024-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5282-
dc.description.abstractWe propose a new technique for the automated classification of focal and nonfocal electroencephalogram (EEG) signals using Fourier-based rhythms in this paper. The EEG rhythms, namely, delta, theta, alpha, beta and gamma, are obtained using the discrete Fourier transform (DFT)-based filter bank applied on EEG signals. The mean-frequency (MF) and root-mean-square (RMS) bandwidth features are derived using DFT-based computation on rhythms of EEG signals and their envelopes. These derived features, namely, MF and RMS bandwidths have been provided as an input feature set for the classification of focal and nonfocal EEG signals using a least-squares support vector machine (LS-SVM) classifier. We present experimental results obtained from the publicly available database in order to demonstrate the effectiveness of the proposed feature sets for the automated classification of the focal and nonfocal classes of EEG signals. The obtained classification accuracy in this dataset for the automated classification of focal and nonfocal 50 pairs and 750 pairs of EEG signals are 89.7% and 89.52%, respectively. © 2017 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.sourceJournal of Mechanics in Medicine and Biologyen_US
dc.subjectAutomationen_US
dc.subjectBandwidthen_US
dc.subjectClassification (of information)en_US
dc.subjectDiscrete Fourier transformsen_US
dc.subjectElectroencephalographyen_US
dc.subjectSupport vector machinesen_US
dc.subjectAutomated classificationen_US
dc.subjectClassification accuracyen_US
dc.subjectDerived featuresen_US
dc.subjectEEG rhythmsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectInput featuresen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectRoot Mean Squareen_US
dc.subjectBiomedical signal processingen_US
dc.titleClassification of focal and nonfocal EEG signals using features derived from fourier-based rhythmsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: