Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJoshi, Dhaivaten_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:39:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:39:16Z-
dc.date.issued2017-
dc.identifier.citationJoshi, D., Tripathi, A., Sharma, R., & Pachori, R. B. (2017). Computer aided detection of abnormal EMG signals based on tunable-Q wavelet transform. Paper presented at the 2017 4th International Conference on Signal Processing and Integrated Networks, SPIN 2017, 544-549. doi:10.1109/SPIN.2017.8050010en_US
dc.identifier.isbn9781509027972-
dc.identifier.otherEID(2-s2.0-85032804647)-
dc.identifier.urihttps://doi.org/10.1109/SPIN.2017.8050010-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5293-
dc.description.abstractThe information present in the electromyogram (EMG) signals can be used for the diagnosis of the neuro-muscular abnormalities such as: Amyotrophic lateral sclerosis (ALS) and myopathy. In this paper, a technique for detection of ALS and myopathy is presented, which is based on tunable-Q wavelet transform (TQWT). For the purpose of detection of these abnormalities, motor unit action potentials (MUAPs) are extracted from the EMG signals. Different entropy features computed from sub-bands obtained using TQWT along with time-domain based features are used for classification of MUAPs. The classification is performed using random forest classifier. The results obtained from proposed methodology show the effectiveness of the technique to distinguish ALS and myopathy signals. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2017 4th International Conference on Signal Processing and Integrated Networks, SPIN 2017en_US
dc.subjectDecision treesen_US
dc.subjectElectromyographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectSignal processingen_US
dc.subjectTime domain analysisen_US
dc.subjectWavelet transformsen_US
dc.subjectAmyotrophic lateral sclerosisen_US
dc.subjectComputer aided detectionen_US
dc.subjectElectromyogramen_US
dc.subjectEMG signalen_US
dc.subjectMotor unit action potentialsen_US
dc.subjectRandom forest classifieren_US
dc.subjectSubbandsen_US
dc.subjectTime domainen_US
dc.subjectBiomedical signal processingen_US
dc.titleComputer aided detection of abnormal EMG signals based on tunable-Q wavelet transformen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: