Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBishnu, Abhijeeten_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:27Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:27Z-
dc.date.issued2017-
dc.identifier.citationBishnu, A., & Bhatia, V. (2017). A zero attracting natural gradient non-parametric maximum likelihood for sparse channel estimation. Paper presented at the 2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedings, , 2018-January 1-6. doi:10.1109/GLOCOM.2017.8254832en_US
dc.identifier.isbn9781509050192-
dc.identifier.otherEID(2-s2.0-85046479026)-
dc.identifier.urihttps://doi.org/10.1109/GLOCOM.2017.8254832-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5301-
dc.description.abstractThe natural gradient (NG) based non-parametric maximum likelihood (NPML) adaptive algorithm gives better sparse channel estimation in terms of convergence rate as compared to stochastic gradient (SG) based NPML in the presence of additive non-Gaussian noise. The step-size of NG- NPML is proportional to the magnitude of respective active tap weights and hence achieves initial faster convergence. However, the mean square error (MSE) and bit error rate performance of both NG-NPML and SG-NPML is same. In this paper, we propose an algorithm to improve the MSE floor by introducing the l1 norm penalty in the cost function. This l1 norm penalty term introduces a zero-attractor (ZA) term in the NG- NPML weight update recursion which shrinks the coefficients of inactive taps and hence reduces the steady state MSE floor. We have also derived the stability condition for the proposed ZA-NG- NPML in terms of mean weight error. Improved performance of the proposed algorithm is validated by simulation for standardized channel model. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedingsen_US
dc.subjectAdaptive algorithmsen_US
dc.subjectBit error rateen_US
dc.subjectChannel estimationen_US
dc.subjectCost functionsen_US
dc.subjectErrorsen_US
dc.subjectFloorsen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectMean square erroren_US
dc.subjectStochastic systemsen_US
dc.subjectBit error rate (BER) performanceen_US
dc.subjectNatural gradienten_US
dc.subjectNon-Gaussian noiseen_US
dc.subjectNon-parametricen_US
dc.subjectSparse channel estimationsen_US
dc.subjectStability conditionen_US
dc.subjectStochastic gradienten_US
dc.subjectzeroattractoren_US
dc.subjectMaximum likelihood estimationen_US
dc.titleA Zero Attracting Natural Gradient Non-Parametric Maximum Likelihood for Sparse Channel Estimationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: