Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKranti, Abhinaven_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:30Z-
dc.date.issued2017-
dc.identifier.citationGupta, M., & Kranti, A. (2017). Suppressing single transistor latch effect in energy efficient steep switching junctionless MOSFETs. Paper presented at the Proceedings - 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems, VLSID 2017, 441-446. doi:10.1109/VLSID.2017.20en_US
dc.identifier.isbn9781509057405-
dc.identifier.otherEID(2-s2.0-85018356078)-
dc.identifier.urihttps://doi.org/10.1109/VLSID.2017.20-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5312-
dc.description.abstractIn this paper, we present an innovative approach to suppress the Single Transistor Latch (STL), a critical limiting phenomenon, in steep switching n-type Silicon (Si) and Germanium (Ge) Double Gate (DG) Junctionless (JL) transistors. The single transistor latch effect, which can limit the operation of the device, can be effectively controlled by sidewall spacer engineering through the optimization of permittivity and thickness, and extend the usable range of device operation for dynamic memory applications. It is shown that through appropriate choice of sidewall spacer parameters, the extent of Impact Ionization (II) occurring in the device can be reduced through the influence of the vertical fringing field while still preserving the sharp increase in drain current which governs the hysteresis window at scaled gate lengths (50 nm) and lower supply voltages (0.9 V). A low permittivity wider sidewall spacer or high permittivity narrow spacer material is optimal for preserving device operation and avoiding STL. The work provides valuable insights into device design and demonstrates the significance of selecting appropriate sidewall spacer parameters as a way forward to overcome STL. © 2016 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings - 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems, VLSID 2017en_US
dc.subjectDrain currenten_US
dc.subjectEnergy efficiencyen_US
dc.subjectGermaniumen_US
dc.subjectImpact ionizationen_US
dc.subjectIonizationen_US
dc.subjectMOSFET devicesen_US
dc.subjectPermittivityen_US
dc.subjectSemiconducting siliconen_US
dc.subjectStatic random access storageen_US
dc.subjectTransistorsen_US
dc.subjectVLSI circuitsen_US
dc.subjectDevice operationsen_US
dc.subjectDynamic memoryen_US
dc.subjectInnovative approachesen_US
dc.subjectJunctionlessen_US
dc.subjectJunctionless transistoren_US
dc.subjectLatchen_US
dc.subjectMOS-FETen_US
dc.subjectSingle transistorsen_US
dc.subjectEmbedded systemsen_US
dc.titleSuppressing Single Transistor Latch Effect in Energy Efficient Steep Switching Junctionless MOSFETsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: