Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Ankitaen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:35Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:35Z-
dc.date.issued2016-
dc.identifier.citationJain, A., & Kanhangad, V. (2016). Investigating gender recognition in smartphones using accelerometer and gyroscope sensor readings. Paper presented at the 2016 International Conference on Computational Techniques in Information and Communication Technologies, ICCTICT 2016 - Proceedings, 597-602. doi:10.1109/ICCTICT.2016.7514649en_US
dc.identifier.isbn9781509000821-
dc.identifier.otherEID(2-s2.0-84980409669)-
dc.identifier.urihttps://doi.org/10.1109/ICCTICT.2016.7514649-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5338-
dc.description.abstractThis paper presents an approach for gender recognition using behavioral biometrics in smartphones. Specifically, this work investigates gender recognition using gait data acquired from the inbuilt accelerometer and gyroscope sensors of a smartphone. The proposed approach involves computation of curvature of the gait signals. In order to capture the local variations of estimated curvatures, we employed histogram features of multi-level local pattern (MLP) and local binary pattern (LBP). In this work, support vector machine (SVM) and aggregate bootstrapping (bagging) classifiers are employed for identification of gender based on the extracted features. Performance evaluation of the proposed approach on a database of 252 gait data collected from 42 subjects yielded promising results. Our experimental results also show that MLP performs better than LBP for feature extraction, while bagging outperforms SVM for classification. © 2016 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2016 International Conference on Computational Techniques in Information and Communication Technologies, ICCTICT 2016 - Proceedingsen_US
dc.subjectAccelerometersen_US
dc.subjectBehavioral researchen_US
dc.subjectBiometricsen_US
dc.subjectFeature extractionen_US
dc.subjectGyroscopesen_US
dc.subjectSmartphonesen_US
dc.subjectSocial sciencesen_US
dc.subjectStatistical methodsen_US
dc.subjectSupport vector machinesen_US
dc.subjectBehavioral biometricsen_US
dc.subjectGait biometricsen_US
dc.subjectGender recognitionen_US
dc.subjectGyroscope sensorsen_US
dc.subjectHistogram featuresen_US
dc.subjectLocal binary patternsen_US
dc.subjectLocal patternsen_US
dc.subjectLocal variationsen_US
dc.subjectPattern recognitionen_US
dc.titleInvestigating gender recognition in smartphones using accelerometer and gyroscope sensor readingsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: