Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5356
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:39Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:39Z-
dc.date.issued2015-
dc.identifier.citationMandloi, M., & Bhatia, V. (2015). Multiple stage ant colony optimization algorithm for near-OPTD large-MIMO detection. Paper presented at the 2015 23rd European Signal Processing Conference, EUSIPCO 2015, 914-918. doi:10.1109/EUSIPCO.2015.7362516en_US
dc.identifier.isbn9780992862633-
dc.identifier.otherEID(2-s2.0-84963979462)-
dc.identifier.urihttps://doi.org/10.1109/EUSIPCO.2015.7362516-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5356-
dc.description.abstractIn this paper, we propose a multiple stage ant colony optimization (MSACO) algorithm for symbol vector detection in large multiple-input multiple-output (MIMO) systems. The proposed algorithm uses minimum mean squared error (MMSE) solution as an initial solution in every stage, and produces a set of solutions by using the ant colony optimization (ACO) based MIMO detection. Finally, a best solution from the generated solution set is selected using the maximum likelihood (ML) metric. Simulation results show that the proposed algorithm significantly outperforms the existing ACO algorithm and some of the other MIMO detection algorithms in terms of bit error rate (BER) performance and achieves near ML performance. Furthermore, the BER performance of the proposed algorithm shifts towards single input single output (SISO) additive white Gaussian noise (AWGN) performance with increase in number of antennas which adds to the importance of MSACO algorithm for detection in large MIMO systems. © 2015 EURASIP.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.source2015 23rd European Signal Processing Conference, EUSIPCO 2015en_US
dc.subjectAlgorithmsen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBit error rateen_US
dc.subjectChannel estimationen_US
dc.subjectError detectionen_US
dc.subjectError statisticsen_US
dc.subjectFading channelsen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectMaximum likelihooden_US
dc.subjectMean square erroren_US
dc.subjectMIMO systemsen_US
dc.subjectOptimizationen_US
dc.subjectSignal detectionen_US
dc.subjectSignal processingen_US
dc.subjectTelecommunication repeatersen_US
dc.subjectTrellis codesen_US
dc.subjectWhite noiseen_US
dc.subjectAdditive White Gaussian noiseen_US
dc.subjectAnt Colony Optimization (ACO)en_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectBit error rate (BER) performanceen_US
dc.subjectMimo detection algorithmsen_US
dc.subjectMinimum mean squared error solutionsen_US
dc.subjectMultiple inputsen_US
dc.subjectSingle input single outputen_US
dc.subjectAnt colony optimizationen_US
dc.titleMultiple stage ant colony optimization algorithm for near-OPTD large-MIMO detectionen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: