Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:48Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:48Z-
dc.date.issued2014-
dc.identifier.citationMitra, R., & Bhatia, V. (2014). The diffusion-KLMS algorithm. Paper presented at the Proceedings - 2014 13th International Conference on Information Technology, ICIT 2014, 256-259. doi:10.1109/ICIT.2014.33en_US
dc.identifier.isbn9781479980840-
dc.identifier.otherEID(2-s2.0-84946687850)-
dc.identifier.urihttps://doi.org/10.1109/ICIT.2014.33-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5392-
dc.description.abstractThe diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings - 2014 13th International Conference on Information Technology, ICIT 2014en_US
dc.subjectAlgorithmsen_US
dc.subjectDiffusion LMSen_US
dc.subjectDistributed networksen_US
dc.subjectFaster convergenceen_US
dc.subjectLeast mean square(LMS)en_US
dc.subjectLinearly separableen_US
dc.subjectLMS algorithmsen_US
dc.subjectMercer Kernelen_US
dc.subjectNon linearen_US
dc.subjectDiffusionen_US
dc.titleThe diffusion-KLMS algorithmen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: