Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, T. Sunilen_US
dc.contributor.authorKanhangad, Viveken_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:51Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:51Z-
dc.date.issued2014-
dc.identifier.citationKumar, T. S., Kanhangad, V., & Pachori, R. B. (2014). Classification of seizure and seizure-free EEG signals using multi-level local patterns. Paper presented at the International Conference on Digital Signal Processing, DSP, , 2014-January 646-650. doi:10.1109/ICDSP.2014.6900745en_US
dc.identifier.isbn9781479946129-
dc.identifier.otherEID(2-s2.0-84923379154)-
dc.identifier.urihttps://doi.org/10.1109/ICDSP.2014.6900745-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5404-
dc.description.abstractThis paper introduces a new discriminant feature - Multi-level local patterns (MLP) for classification of seizure and seizure-free electroencephalogram (EEG) signals. The proposed approach employs Empirical mode decomposition (EMD) in order to decompose non-stationary EEG signals into intrinsic mode functions (IMFs). Multi-level local patterns are computed for each of these IMFs by performing comparisons in the local neighborhood of a sample value of the signal. Finally, a feature set is formed by computation of histograms of MLPs. In order to classify the EEG signal based on these features, we employ the nearest neighbor (NN) classifier, which utilizes scores computed from matching of histogram features of MLPs to determine the category of the EEG signal. Experimental evaluation of this approach on publicly available EEG dataset yielded improved classification accuracies as compared to the existing approaches in the literature. The best average classification accuracy of the proposed approach is 98.67%, which demonstrates the discriminatory capability of the proposed multi-level local patterns. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceInternational Conference on Digital Signal Processing, DSPen_US
dc.subjectClassification (of information)en_US
dc.subjectDigital signal processingen_US
dc.subjectElectroencephalographyen_US
dc.subjectFunctionsen_US
dc.subjectGraphic methodsen_US
dc.subjectSignal processingen_US
dc.subjectEEG signalsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectLocal binary patternsen_US
dc.subjectLocal patternsen_US
dc.subjectBiomedical signal processingen_US
dc.titleClassification of seizure and seizure-free EEG signals using multi-level local patternsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: