Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5407
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:51Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:51Z-
dc.date.issued2014-
dc.identifier.citationBajaj, V., & Pachori, R. B. (2014). Human emotion classification from eeg signals using multiwavelet transform. Paper presented at the Proceedings - 2014 International Conference on Medical Biometrics, ICMB 2014, 125-130. doi:10.1109/ICMB.2014.29en_US
dc.identifier.isbn9781479940141-
dc.identifier.otherEID(2-s2.0-84904667612)-
dc.identifier.urihttps://doi.org/10.1109/ICMB.2014.29-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5407-
dc.description.abstractIn this paper, we propose new features based on multiwavelet transform for classification of human emotions from electroencephalogram (EEG) signals. The EEG signal measures electrical activity of the brain, which contains lot of information related to emotional states. The sub-signals obtained by multiwavelet decomposition of EEG signals are plotted in a 3-D phase space diagram using phase space reconstruction (PSR). The mean and standard deviation of Euclidian distances are computed from 3-D phase space diagram. These features have been used as input features set for multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet and Morlet wavelet kernel functions for classification of emotions. The proposed features based on multiwavelet transform of EEG signals with Morlet wavelet kernel function of MC-LS-SVM have provided better classification accuracy for classification of emotions. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceProceedings - 2014 International Conference on Medical Biometrics, ICMB 2014en_US
dc.subjectElectroencephalographyen_US
dc.subjectImage segmentationen_US
dc.subjectMan machine systemsen_US
dc.subjectPhase space methodsen_US
dc.subjectRadial basis function networksen_US
dc.subjectSupport vector machinesen_US
dc.subjectClassification of emotionsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectMulti-wavelet transformen_US
dc.subjectPhase space reconstructions (PSR)en_US
dc.subjectSignal processingen_US
dc.titleHuman emotion classification from eeg signals using multiwavelet transformen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: