Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:52Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:52Z-
dc.date.issued2014-
dc.identifier.citationSharma, R., Pachori, R. B., & Gautam, S. (2014). Empirical mode decomposition based classification of focal and non-focal seizure EEG signals. Paper presented at the Proceedings - 2014 International Conference on Medical Biometrics, ICMB 2014, 135-140. doi:10.1109/ICMB.2014.31en_US
dc.identifier.isbn9781479940141-
dc.identifier.otherEID(2-s2.0-84904640580)-
dc.identifier.urihttps://doi.org/10.1109/ICMB.2014.31-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5408-
dc.description.abstractThe electroencephalogram (EEG) signals are commonly used signals for detection of epileptic seizures. In this paper, we present a new method for classification of two classes of EEG signals namely focal and non-focal EEG signals. The proposed method uses the sample entropies and variances of the intrinsic mode functions (IMFs) obtained by empirical mode decomposition (EMD) of EEG signals. The average sample entropy (ASE) of IMFs and average variance of instantaneous frequencies (AVIF) of IMFs for separate EEG signals have been used as features for classification of focal and non-focal EEG signals. These two parameters have been used as an input feature set to the least square support vector machine (LS-SVM) classifier. The experimental results for various IMFs of focal and non-focal EEG signals have been included to show the effectiveness of the proposed method. The proposed method has provided promising classification accuracy for classification of focal and non-focal seizure EEG signals when radial basis function (RBF) has been employed as a kernel with LS-SVM classifier. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceProceedings - 2014 International Conference on Medical Biometrics, ICMB 2014en_US
dc.subjectEntropyen_US
dc.subjectImage segmentationen_US
dc.subjectRadial basis function networksen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectClassification accuracyen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpileptic seizuresen_US
dc.subjectInstantaneous frequencyen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectLeast square support vector machinesen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectElectroencephalographyen_US
dc.titleEmpirical mode decomposition based classification of focal and non-focal seizure EEG signalsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: