Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5422
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukherjee, Shaibalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:55Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:55Z-
dc.date.issued2013-
dc.identifier.citationPandey, S. K., Pandey, S. K., & Mukherjee, S. (2013). Design and growth optimization by dual ion beam sputtering of ZnO-based high-efficiency multiple quantum well green light emitting diode. Paper presented at the Proceedings - Winter Simulation Conference, 205-208. doi:10.1109/INEC.2013.6465999en_US
dc.identifier.isbn9781467348416-
dc.identifier.issn0891-7736-
dc.identifier.otherEID(2-s2.0-84874766584)-
dc.identifier.urihttps://doi.org/10.1109/INEC.2013.6465999-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5422-
dc.description.abstractThis paper presents an in-depth analysis of Cd0.4Zn 0.6O/ZnO multiple quantum well light emitting diode (LED) using commercial simulation software and experimentally optimized growth conditions of n-type ZnO on Si (001) substrate by dual ion beam sputtering deposition (DIBSD) system. Theoretical study reveals an internal quantum efficiency-93.5% is achieved at room temperature from the device, emitting at 510 nm with a turn-on voltage of 3 V. The effect of substrate temperature and gas composition on ZnO growth has been investigated. Growth parameters optimization is performed using structural, electrical, and optical characterizations. ZnO grown at 600 °C shows a strong ZnO (002) X-ray diffraction (XRD) peak at 34.6°, indicating the realization of high-quality c-axis orientation of ZnO layer. Four probe Hall measurements demonstrate achievements of a maximum carrier mobility of-500 cm2/V.s with a low electrical resistivity of ∼10-3 Ω. cm and a carrier concentration of ∼1018 cn-3 from the grown ZnO samples at room temperature. Results from atomic force microscope (AFM) measurements depict that RMS roughness of ZnO (10 μm × 10 μm) reduces from 44 Å to 10 Å when the substrate temperature is increased from 100 °C to 400 °C and then increased to 22 Å as the substrate temperature is increased to 600 °C. Photoluminescence (PL) studies conducted at room temperature describe a strong band-edge emission at 380 nm from ZnO samples. Prominent PL shoulder peaks are observed at ∼485 nm and 618 nm from ZnO grown at 400.en_US
dc.language.isoenen_US
dc.sourceProceedings - Winter Simulation Conferenceen_US
dc.subjectAtomic force microscope (AFM)en_US
dc.subjectBand-edge emissionsen_US
dc.subjectC-axis orientationsen_US
dc.subjectDIBSDen_US
dc.subjectDual ion beam sputteringen_US
dc.subjectElectrical resistivityen_US
dc.subjectFour-probeen_US
dc.subjectGas compositionsen_US
dc.subjectGreen LEDsen_US
dc.subjectGreen light emitting diodesen_US
dc.subjectGrowth conditionsen_US
dc.subjectGrowth optimizationen_US
dc.subjectGrowth parametersen_US
dc.subjectHall measurementsen_US
dc.subjectHigh qualityen_US
dc.subjectHigh-efficiencyen_US
dc.subjectIn-depth analysisen_US
dc.subjectN-type ZnOen_US
dc.subjectOptical characterizationen_US
dc.subjectRMS roughnessen_US
dc.subjectRoom temperatureen_US
dc.subjectShoulder peaksen_US
dc.subjectSimulation softwareen_US
dc.subjectSubstrate temperatureen_US
dc.subjectTheoretical studyen_US
dc.subjectTurn-on voltagesen_US
dc.subjectXRDen_US
dc.subjectZnOen_US
dc.subjectZnO layersen_US
dc.subjectAtomic force microscopyen_US
dc.subjectComputer softwareen_US
dc.subjectElectric conductivityen_US
dc.subjectNanoelectronicsen_US
dc.subjectOptimizationen_US
dc.subjectSemiconductor quantum wellsen_US
dc.subjectSubstratesen_US
dc.subjectX ray diffractionen_US
dc.subjectZinc oxideen_US
dc.subjectLight emitting diodesen_US
dc.titleDesign and growth optimization by dual ion beam sputtering of ZnO-based high-efficiency multiple quantum well green light emitting diodeen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: