Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5428
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Poojaen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:56Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:56Z-
dc.date.issued2013-
dc.identifier.citationJain, P., & Pachori, R. B. (2013). GCI identification from voiced speech using the eigen value decomposition of hankel matrix. Paper presented at the International Symposium on Image and Signal Processing and Analysis, ISPA, 371-376. doi:10.1109/ispa.2013.6703769en_US
dc.identifier.isbn9789531841948-
dc.identifier.issn1845-5921-
dc.identifier.otherEID(2-s2.0-84896359998)-
dc.identifier.urihttps://doi.org/10.1109/ispa.2013.6703769-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5428-
dc.description.abstractIn this paper, we present a novel method for robust and accurate identification of glottal closure instants (GCIs) from the voiced speech signal. The proposed method employs a new iterative algorithm based on the eigen value decomposition (EVD) of Hankel matrix to extract the time-varying fundamental frequency (F0) component of the voiced speech signal. The extracted F0 component is used to isolated the peak negative cycles of the low frequency range (LFR) filtered voiced speech signal. The GCIs are identified by detecting local minimas in the derivative of falling edges of peak negative cycles of the LFR filtered voiced speech signal which is followed by a selection criterion. The experimental results on speech signals under the white noise environment at various levels of degradation demonstrate that the proposed method outperforms existing methods in terms of accuracy and identification rate. © 2013 University of Trieste and University of Zagreb.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceInternational Symposium on Image and Signal Processing and Analysis, ISPAen_US
dc.subjectImage analysisen_US
dc.subjectIterative methodsen_US
dc.subjectMatrix algebraen_US
dc.subjectSpeechen_US
dc.subjectSpeech analysisen_US
dc.subjectSpeech communicationen_US
dc.subjectSpeech recognitionen_US
dc.subjectWhite noiseen_US
dc.subjectEigenvalue decompositionen_US
dc.subjectFundamental frequenciesen_US
dc.subjectGlottal Closure Instantsen_US
dc.subjectHankel matrixen_US
dc.subjectIdentification ratesen_US
dc.subjectIterative algorithmen_US
dc.subjectLow frequency rangeen_US
dc.subjectSpeech signal processingen_US
dc.subjectAudio signal processingen_US
dc.titleGCI identification from voiced speech using the eigen value decomposition of Hankel matrixen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: