Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:41:59Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:41:59Z-
dc.date.issued2012-
dc.identifier.citationBajaj, V., & Pachori, R. B. (2012). EEG signal classification using empirical mode decomposition and support vector machine doi:10.1007/978-81-322-0491-6_57en_US
dc.identifier.isbn9788132204909-
dc.identifier.issn1867-5662-
dc.identifier.otherEID(2-s2.0-84861210590)-
dc.identifier.urihttps://doi.org/10.1007/978-81-322-0491-6_57-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5438-
dc.description.abstractIn this paper, we present a new method based on empirical mode decomposition (EMD) for classification of seizure and seizure-free EEG signals. The EMD method decomposes the EEG signal into a set of narrow-band amplitude and frequency modulated (AM-FM) components known as intrinsic mode functions (IMFs). The method proposes the use of the area parameter and mean frequency estimation of IMFs in the classification of the seizure and seizure-free EEG signals. These parameters have been used as an input in least squares support vector machine (LS-SVM), which provides classification of seizure EEG signals from seizure-free EEG signals. The classification accuracy for classification of seizure and seizure-free EEG signals obtained by using proposed method is 98.33% for second IMF with radial basis function kernel of LS-SVM. © 2012 Springer India Pvt. Ltd.en_US
dc.language.isoenen_US
dc.sourceAdvances in Intelligent and Soft Computingen_US
dc.subjectClassification accuracyen_US
dc.subjectEEG signal classificationen_US
dc.subjectEEG signalsen_US
dc.subjectEMD methoden_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectFrequency modulateden_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectNarrow bandsen_US
dc.subjectRadial basis functionsen_US
dc.subjectProblem solvingen_US
dc.subjectRadial basis function networksen_US
dc.subjectSignal processingen_US
dc.subjectSoft computingen_US
dc.subjectSupport vector machinesen_US
dc.titleEEG signal classification using empirical mode decomposition and support vector machineen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: