Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:03Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:03Z-
dc.date.issued2022-
dc.identifier.citationDubey, R., Kumar, M., Upadhyay, A., & Pachori, R. B. (2022). Automated diagnosis of muscle diseases from EMG signals using empirical mode decomposition based method. Biomedical Signal Processing and Control, 71 doi:10.1016/j.bspc.2021.103098en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85114123472)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2021.103098-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5454-
dc.description.abstractMuscle activity decreases due to various conditions like age factors and muscle diseases namely, amyotrophic lateral sclerosis (ALS) and myopathy. Electromyogram (EMG) signals are regularly explored by specialists to analyze the irregularity of muscles. Manual investigation of EMG signals is a tedious task for medical practitioners. Therefore, this work proposes a new method for classifying the ALS, myopathy, and normal EMG signals. In the proposed method, the empirical mode decomposition (EMD) method is applied to decompose the EMG signals into intrinsic mode functions (IMFs). The suitable IMFs for feature selection are selected using the t-test based approach and used to compute the foot distances denoted as fp1 and fp2 by constructing the complex plane plot. The quadrilateral is drawn over a complex plot by considering fp1 and fp2 as a diagonal of it, followed by calculating the area (A) and circumference (CF) of the quadrilateral. These measures are utilized for separating the three classes of myopathy, ALS, and normal EMG signals. The proposed algorithm has been trained and validated using a feed forward neural network (FFNN), support vector machine (SVM), and decision tree. The algorithm, when tested with a FFNN, achieved the maximum classification accuracy, sensitivity, and specificity of 99.53%, 99.25% and 99.60%, respectively. © 2021en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectBiomedical signal processingen_US
dc.subjectComplex networksen_US
dc.subjectData miningen_US
dc.subjectDecision treesen_US
dc.subjectDiagnosisen_US
dc.subjectMuscleen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectSupport vector machinesen_US
dc.subjectAmyotrophic lateral sclerosisen_US
dc.subjectAutomated diagnosisen_US
dc.subjectElectromyo gramsen_US
dc.subjectEmg signals (Electromyogram)en_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectFeed-forward neural networken_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectMuscle activitiesen_US
dc.subjectMuscle diseaseen_US
dc.subjectMyopathyen_US
dc.subjectFunctionsen_US
dc.subjectadulten_US
dc.subjectageden_US
dc.subjectamyotrophic lateral sclerosisen_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectbiceps brachii muscleen_US
dc.subjectclassification algorithmen_US
dc.subjectclinical articleen_US
dc.subjectcontrolled studyen_US
dc.subjectdecision treeen_US
dc.subjectelectromyographyen_US
dc.subjectempirical mode decompositionen_US
dc.subjectfeature extractionen_US
dc.subjectfeature selectionen_US
dc.subjectfeed forward neural networken_US
dc.subjectfemaleen_US
dc.subjectHilbert transformen_US
dc.subjecthumanen_US
dc.subjectintrinsic mode functionen_US
dc.subjectmaleen_US
dc.subjectmiddle ageden_US
dc.subjectmotor unit potentialen_US
dc.subjectmuscle contractionen_US
dc.subjectmyopathyen_US
dc.subjectneuromuscular diseaseen_US
dc.subjectnumber of crossingsen_US
dc.subjectpolymyositisen_US
dc.subjectradiculopathyen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsupport vector machineen_US
dc.subjectsurface electromyographyen_US
dc.subjectvastus muscleen_US
dc.titleAutomated diagnosis of muscle diseases from EMG signals using empirical mode decomposition based methoden_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: