Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBohara, Poojaen_US
dc.contributor.authorVishvakarma, Santosh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:04Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:04Z-
dc.date.issued2022-
dc.identifier.citationBohara, P., & Vishvakarma, S. K. (2022). Overcoming bit loss mechanism in self-amplified multilevel silicon-oxide-nitride-oxide-silicon memory cell. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35(1) doi:10.1002/jnm.2924en_US
dc.identifier.issn0894-3370-
dc.identifier.otherEID(2-s2.0-85108382833)-
dc.identifier.urihttps://doi.org/10.1002/jnm.2924-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5455-
dc.description.abstractThis work reports on the triple-level NAND flash cell realized from self-amplified (SA) double gate (DG) tunneling-based silicon-oxide-nitride-oxide-silicon (T-SONOS) memory device. Through calibrated simulations, we show that capacitive coupling between the front gate and back gate can be used to store eight states (or 3 bits), that is, from “000” to “111,” in a T-SONOS memory device with the readable difference between each level at lower programming voltages. The performance of the multilevel T-SONOS cell is compared with the inversion mode SONOS (I-SONOS) multilevel cell. Results highlight that gate length (Lg) scaling from 100 to 25 nm significantly deteriorates the threshold voltage associated with the lower states in the I-SONOS multilevel cell. However, highly stable eight states can be achieved in a multi-level T-SONOS cell at Lg = 25 nm. The results highlight the potential of SA T-SONOS cell for designing multilevel memory cell arrays. © 2021 John Wiley & Sons Ltd.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.sourceInternational Journal of Numerical Modelling: Electronic Networks, Devices and Fieldsen_US
dc.subjectCellsen_US
dc.subjectFlash memoryen_US
dc.subjectMemory architectureen_US
dc.subjectNitridesen_US
dc.subjectSemiconductor storageen_US
dc.subjectSilicon oxidesen_US
dc.subjectThreshold voltageen_US
dc.subjectCapacitive couplingsen_US
dc.subjectInversion modesen_US
dc.subjectLoss mechanismsen_US
dc.subjectMultilevel cellen_US
dc.subjectMultilevel memoryen_US
dc.subjectProgramming voltageen_US
dc.subjectSilicon oxide nitride oxide siliconsen_US
dc.subjectSilicon-oxide-nitride-oxide-silicon memoryen_US
dc.subjectCytologyen_US
dc.titleOvercoming bit loss mechanism in self-amplified multilevel silicon-oxide-nitride-oxide-silicon memory cellen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: