Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajput, Gunjanen_US
dc.contributor.authorRaut, Gopalen_US
dc.contributor.authorVishvakarma, Santosh Kumaren_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:13Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:13Z-
dc.date.issued2021-
dc.identifier.citationRajput, G., Raut, G., Chandra, M., & Vishvakarma, S. K. (2021). VLSI implementation of transcendental function hyperbolic tangent for deep neural network accelerators. Microprocessors and Microsystems, 84 doi:10.1016/j.micpro.2021.104270en_US
dc.identifier.issn0141-9331-
dc.identifier.otherEID(2-s2.0-85106661503)-
dc.identifier.urihttps://doi.org/10.1016/j.micpro.2021.104270-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5491-
dc.description.abstractExtensive use of neural network applications prompted researchers to customize a design to speed up their computation based on ASIC implementation. The choice of activation function (AF) in a neural network is an essential requirement. Accurate design architecture of an AF in a digital network faces various challenges as these AF require more hardware resources because of its non-linear nature. This paper proposed an efficient approximation scheme for hyperbolic tangent (tanh) function which purely based on combinational design architecture. The approximation is based on mathematical analysis by considering maximum allowable error in a neural network. The results prove that the proposed combinational design of an AF is efficient in terms of area, power and delay with negligible accuracy loss on MNIST and CIFAR-10 benchmark datasets. Post synthesis results show that the proposed design area is reduced by 66% and delay is reduced by nearly 16% compared to state-of-the-art. © 2021 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceMicroprocessors and Microsystemsen_US
dc.subjectApproximation theoryen_US
dc.subjectChemical activationen_US
dc.subjectComputation theoryen_US
dc.subjectDeep neural networksen_US
dc.subjectNetwork architectureen_US
dc.subjectActivation functionsen_US
dc.subjectCombinational logicen_US
dc.subjectDesign architectureen_US
dc.subjectDigital implementationen_US
dc.subjectHyperbolic tangenten_US
dc.subjectHyperbolic tangent (tanh)en_US
dc.subjectNeural network applicationen_US
dc.subjectNeural-networksen_US
dc.subjectTranscendental functionsen_US
dc.subjectVLSI implementationen_US
dc.subjectHyperbolic functionsen_US
dc.titleVLSI implementation of transcendental function hyperbolic tangent for deep neural network acceleratorsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: