Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5493
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:14Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:14Z-
dc.date.issued2021-
dc.identifier.citationFatimah, B., Singh, P., Singhal, A., Pramanick, D., Pranav, S., & Pachori, R. B. (2021). Efficient detection of myocardial infarction from single lead ECG signal. Biomedical Signal Processing and Control, 68 doi:10.1016/j.bspc.2021.102678en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85105073150)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2021.102678-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5493-
dc.description.abstractMyocardial infarction (MI) is a heart condition arising due to partial or complete blockage of blood flow to heart muscles. This can lead to permanent damage to the heart and can be fatal, if not detected early. In this work, we use single channel electrocardiogram (ECG) signal to develop two automated MI detection algorithms, namely, primary and modified. The primary algorithm is an ECG beat-based detection algorithm, while the modified algorithm considers frames of 4096 samples for detecting MI. Fourier decomposition method (FDM) is used to remove baseline wander and powerline interference, and then decompose ECG beats/frames into Fourier intrinsic band functions (FIBFs). Features including entropy, kurtosis, and energy are computed from each FIBF and relevant features are selected using the Kruskal–Wallis test. Various machine learning classifiers such as k-nearest neighbor (kNN), support vector machine (SVM), ensemble bagged trees and ensemble of subspace of kNN, are used to build the detection models. The best results are obtained for the primary algorithm with kNN classifier, where the accuracy obtained is 99.96%, sensitivity is 99.96% and selectivity is 99.95%. The modified algorithm, on the other hand, is computationally more efficient as it bypasses the beat extraction step and uses FDM only once for both noise removal and extraction of FIBFs. It achieves an accuracy of 99.65%, with 99.61% sensitivity and 99.73% selectivity. The proposed method performs better than the existing state-of-the-art techniques, and it has the potential for efficient real-time implementation in MI detection systems. © 2021 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectBiomedical signal processingen_US
dc.subjectCardiologyen_US
dc.subjectDamage detectionen_US
dc.subjectExtractionen_US
dc.subjectFourier transformsen_US
dc.subjectHearten_US
dc.subjectLearning algorithmsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectReal time controlen_US
dc.subjectSignal detectionen_US
dc.subjectSupport vector machinesen_US
dc.subjectDetection algorithmen_US
dc.subjectElectrocardiogram signalen_US
dc.subjectFourieren_US
dc.subjectFourier decompositionen_US
dc.subjectFourier decomposition methoden_US
dc.subjectFourier intrinsic band functionen_US
dc.subjectMachine-learningen_US
dc.subjectModified algorithmsen_US
dc.subjectMyocardial Infarctionen_US
dc.subjectMyocardial infractionen_US
dc.subjectElectrocardiographyen_US
dc.subjectadolescenten_US
dc.subjectadulten_US
dc.subjectageden_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectcontrolled studyen_US
dc.subjectdetection algorithmen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectdiagnostic test accuracy studyen_US
dc.subjectelectrocardiogramen_US
dc.subjectentropyen_US
dc.subjectfemaleen_US
dc.subjectheart infarctionen_US
dc.subjecthumanen_US
dc.subjecthuman tissueen_US
dc.subjectKruskal Wallis testen_US
dc.subjectmachine learningen_US
dc.subjectmajor clinical studyen_US
dc.subjectmaleen_US
dc.subjectnoise reductionen_US
dc.subjectpriority journalen_US
dc.subjectselectivity indexen_US
dc.subjectsensitivity analysisen_US
dc.subjectsupport vector machineen_US
dc.titleEfficient detection of myocardial infarction from single lead ECG signalen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: