Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5495
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:15Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:15Z-
dc.date.issued2021-
dc.identifier.citationGaur, P., McCreadie, K., Pachori, R. B., Wang, H., & Prasad, G. (2021). An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation. Biomedical Signal Processing and Control, 68 doi:10.1016/j.bspc.2021.102574en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85104090455)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2021.102574-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5495-
dc.description.abstractA motor imagery (MI) based brain–computer interface (BCI) decodes the motor intention from the electroencephalogram (EEG) of a subject and translates this into a control signal. These intentions are hence classified as different cognitive tasks, e.g. left and right hand movements. A challenge in developing a BCI is handling the high dimensionality of the data recorded from multichannel EEG signals which are highly subject-specific. Designing a portable BCI whilst minimizing EEG channel number is a challenge. To this end, this paper presents a method to reduce the channel count with the goal of reducing computational complexity whilst maintaining a sufficient level of accuracy, by utilising an automatic subject-specific channel selection method created using the Pearson correlation coefficient. This method computes the correlation between EEG signals and helps to select highly correlated EEG channels for a particular subject without compromising classification accuracy (CA). Common spatial patterns (CSP) are used to analyse imagined left and right hand movements and the method is evaluated on both BCI Competition III Dataset IIIa and right hand and foot imagined tasks on BCI Competition III Dataset IVa. For both datasets, a minimum number of EEG channels are identified with an average channel reduction of 65.45% whilst demonstrating an increase of >5% in CA using channel Cz as a reference. © 2021 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectBiomedical signal processingen_US
dc.subjectBrain computer interfaceen_US
dc.subjectCorrelation methodsen_US
dc.subjectElectroencephalographyen_US
dc.subjectImage classificationen_US
dc.subjectImage enhancementen_US
dc.subjectChannel selectionen_US
dc.subjectClassification accuracyen_US
dc.subjectCommon spatial patternsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectHands movementen_US
dc.subjectLinear discriminant analysisen_US
dc.subjectMotor imageryen_US
dc.subjectMotor imagery classificationen_US
dc.subjectSelection methodsen_US
dc.subjectSubject-specificen_US
dc.subjectDiscriminant analysisen_US
dc.subjectaccuracyen_US
dc.subjectArticleen_US
dc.subjectclassificationen_US
dc.subjectcorrelation coefficienten_US
dc.subjectcross validationen_US
dc.subjectdiscriminant analysisen_US
dc.subjectelectroencephalogramen_US
dc.subjectfeature extractionen_US
dc.subjectfooten_US
dc.subjecthand movementen_US
dc.subjecthumanen_US
dc.subjectimageryen_US
dc.subjectmotor imageryen_US
dc.subjectpriority journalen_US
dc.subjectsignal processingen_US
dc.titleAn automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: