Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSiddharth, Gauraven_US
dc.contributor.authorDubey, Mayanken_US
dc.contributor.authorMukherjee, Shaibalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:16Z-
dc.date.issued2021-
dc.identifier.citationSengar, B. S., Garg, V., Siddharth, G., Kumar, A., Pandey, S. K., Dubey, M., . . . Mukherjee, S. (2021). Improving the Cu2ZnSn(S,se)4-based photovoltaic conversion efficiency by back-contact modification. IEEE Transactions on Electron Devices, 68(6), 2748-2752. doi:10.1109/TED.2021.3071105en_US
dc.identifier.issn0018-9383-
dc.identifier.otherEID(2-s2.0-85104603946)-
dc.identifier.urihttps://doi.org/10.1109/TED.2021.3071105-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5500-
dc.description.abstractBack-contact modification using a 10-nm ZnS layer in CZTSSe-based solar cell can play a crucial role in improving photovoltaic conversion efficiency. An ultrathin layer of ZnS is deposited over Mo-coated soda lime glass substrate before depositing CZTSSe using sputtering. The crystal structure of deposited CZTSSe thin films over ZnS is recognized as (112)-oriented, polycrystalline in nature, and free from the presence of any secondary phases such as Cu2(S,Se) or Zn(S,Se). The bandgap of CZTSSe thin films deposited over ultrathin ZnS is observed to increase from 1.49 (deposited over Mo directly) to 1.58 eV at room temperature, as determined by spectroscopic ellipsometry. In addition, numerical simulation has been performed using SCAPS software. The impact of ZnS layer has been simulated by using the defects in the absorber and at the interface of ZnS/CZTSSe. The simulated results have been validated with experimentally fabricated CZTSSe device. Simulated device with ZnS intermediate layer is observed to give rise to a photovoltaic conversion efficiency of 15.2%. © 1963-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Electron Devicesen_US
dc.subjectComputer softwareen_US
dc.subjectConversion efficiencyen_US
dc.subjectCrystal structureen_US
dc.subjectEfficiencyen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectLimeen_US
dc.subjectMolybdenum compoundsen_US
dc.subjectMolybdenum metallographyen_US
dc.subjectSolar cellsen_US
dc.subjectSpectroscopic ellipsometryen_US
dc.subjectSubstratesen_US
dc.subjectUltrathin filmsen_US
dc.subjectZinc sulfideen_US
dc.subjectBack contacten_US
dc.subjectIntermediate layersen_US
dc.subjectPhotovoltaic conversionen_US
dc.subjectPolycrystallineen_US
dc.subjectSecondary phasisen_US
dc.subjectSimulated resultsen_US
dc.subjectSoda lime glass substrateen_US
dc.subjectUltrathin layersen_US
dc.subjectSelenium compoundsen_US
dc.titleImproving the Cu2ZnSn(S,Se)4-Based Photovoltaic Conversion Efficiency by Back-Contact Modificationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: