Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:17Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:17Z-
dc.date.issued2021-
dc.identifier.citationMehla, V. K., Singhal, A., Singh, P., & Pachori, R. B. (2021). An efficient method for identification of epileptic seizures from EEG signals using fourier analysis. Physical and Engineering Sciences in Medicine, 44(2), 443-456. doi:10.1007/s13246-021-00995-3en_US
dc.identifier.issn2662-4729-
dc.identifier.otherEID(2-s2.0-85103432258)-
dc.identifier.urihttps://doi.org/10.1007/s13246-021-00995-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5501-
dc.description.abstractEpilepsy is a disease recognized as the chronic neurological dysfunction of the human brain which is described by the sudden and excessive electrical discharges of the brain cells. Electroencephalogram (EEG) is a prime tool applied for the diagnosis of epilepsy. In this study, a novel and effective approach is introduced to decompose the non-stationary EEG signals using the Fourier decomposition method. The concept of position, velocity, and acceleration has been employed on the EEG signals for feature extraction using Lp norms computed from Fourier intrinsic band functions (FIBFs). The proposed scheme comprises three main sections. In the first section, the EEG signal is decomposed into a finite number of FIBFs. In the second stage, the features are extracted from FIBFs and relevant features are selected by using the Kruskal–Wallis test. In the last stage, the significant features are passed on to the support vector machine (SVM) classifier. By applying 10-fold cross-validation, the proposed method provides better results in comparison to the state-of-the-art methods discussed in the literature, with an average classification accuracy of 99.96% and 99.94% for classification of EEG signals from the BONN dataset and the CHB-MIT dataset, respectively. It can be implemented using the computationally efficient fast Fourier transform (FFT) algorithm. © 2021, Australasian College of Physical Scientists and Engineers in Medicine.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourcePhysical and Engineering Sciences in Medicineen_US
dc.subjectClassification (of information)en_US
dc.subjectElectric dischargesen_US
dc.subjectElectroencephalographyen_US
dc.subjectFast Fourier transformsen_US
dc.subjectFourier analysisen_US
dc.subjectNeurologyen_US
dc.subjectSupport vector machinesen_US
dc.subject10-fold cross-validationen_US
dc.subjectClassification accuracyen_US
dc.subjectComputationally efficienten_US
dc.subjectElectrical dischargesen_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectFast Fourier transform algorithmen_US
dc.subjectFourier decompositionen_US
dc.subjectState-of-the-art methodsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectArticleen_US
dc.subjectclassificationen_US
dc.subjectcross validationen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectdiagnostic test accuracy studyen_US
dc.subjectelectroencephalogramen_US
dc.subjectepilepsyen_US
dc.subjectfeature extractionen_US
dc.subjectFourier analysisen_US
dc.subjectFourier decomposition methoden_US
dc.subjectFourier intrinsic band functionen_US
dc.subjectFourier transformen_US
dc.subjecthumanen_US
dc.subjectintermethod comparisonen_US
dc.subjectKruskal Wallis testen_US
dc.subjectmathematical phenomenaen_US
dc.subjectseizureen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.subjectelectroencephalographyen_US
dc.subjectFourier analysisen_US
dc.subjectseizureen_US
dc.subjectElectroencephalographyen_US
dc.subjectEpilepsyen_US
dc.subjectFourier Analysisen_US
dc.subjectHumansen_US
dc.subjectSeizuresen_US
dc.subjectSupport Vector Machineen_US
dc.titleAn efficient method for identification of epileptic seizures from EEG signals using Fourier analysisen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: