Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:19Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:19Z-
dc.date.issued2021-
dc.identifier.citationKhan, S. I., & Pachori, R. B. (2021). Automated detection of posterior myocardial infarction from vectorcardiogram signals using fourier-bessel series expansion based empirical wavelet transform. IEEE Sensors Letters, 5(5) doi:10.1109/LSENS.2021.3070142en_US
dc.identifier.issn2475-1472-
dc.identifier.otherEID(2-s2.0-85103779192)-
dc.identifier.urihttps://doi.org/10.1109/LSENS.2021.3070142-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5507-
dc.description.abstractPosterior myocardial infarction (PMI) is a fatal condition of the human heart, wherein the posterior coronary circulation becomes disrupted. If left untreated, the PMI can cause a severe heart attack. To detect PMI, the conventional 12-lead standard electrocardiogram signals demonstrate poor detection sensitivity due to the absence of posterior sensing electrodes. Contrastingly, the three lead vectorcardiogram (VCG) signal has the sensor electrodes placed on the posterior side, thereby improving the reliability of PMI diagnosis. In this letter, we use VCG signals for the classification of PMI and healthy control (HC) subjects. The abnormalities in the electrical conduction due to PMI are captured using Fourier-Bessel series expansion based empirical wavelet transform, followed by the singular value decomposition (SVD). The resultant feature space is then utilized to classify PMI and HC segments using a support vector machine (SVM) classifier with various kernels, namely, linear, Gaussian, and radial basis function (RBF). The SVM with RBF kernel has resulted in the maximum classification accuracy, sensitivity, and specificity of 95.52, 91.08, and 97.45%, respectively, over the Physikalisch-Technische Bundesanstalt diagnostic database. Thus, the proposed method has the potential to be used in the clinical setting for accurate and robust PMI detection. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Lettersen_US
dc.subjectCardiologyen_US
dc.subjectClassification (of information)en_US
dc.subjectElectrodesen_US
dc.subjectFourier seriesen_US
dc.subjectHeat conductionen_US
dc.subjectSingular value decompositionen_US
dc.subjectSupport vector machinesen_US
dc.subjectVector spacesen_US
dc.subjectWavelet decompositionen_US
dc.subjectClassification accuracyen_US
dc.subjectDetection sensitivityen_US
dc.subjectElectrical conductionen_US
dc.subjectElectrocardiogram signalen_US
dc.subjectFourier-Bessel series expansionen_US
dc.subjectMyocardial Infarctionen_US
dc.subjectPhysikalisch-technische bundesanstalten_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectBiomedical signal processingen_US
dc.titleAutomated Detection of Posterior Myocardial Infarction from Vectorcardiogram Signals Using Fourier-Bessel Series Expansion Based Empirical Wavelet Transformen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: